Analysis of spatial distribution of sediment toxicity in the 2nd reservoir of the Kis Balaton Water Protection System

Authors

  • Nóra Kováts University of Veszprém, Dept. of Environmental Engineering and Chemical Technology, H-8200 Veszprém, Egyetem Str. 10.
  • Gábor Borbély University of Veszprém, Dept. of Environmental Engineering and Chemical Technology, H-8200 Veszprém, Egyetem Str. 10.
  • Imre Magyar University of Veszprém, Dept. of Environmental Engineering and Chemical Technology, H-8200 Veszprém, Egyetem Str. 10.
  • Zsuzsanna Szép University of Veszprém, Dept. of Environmental Engineering and Chemical Technology, H-8200 Veszprém, Egyetem Str. 10.
  • Gábor Paulovits Balaton Limnological Research Institute of the Hungarian Academy of Sciences, H-8237 Tihany, Klebersberg Kunó Str. 3.
  • Piroska Pomogyi West Transdanubian Water Authority, Dept. Kis-Balaton, H-8360 Keszthely, Csík Ferenc Str. 1

Keywords:

Kis-Balaton Water Protection System, sediment toxicity, ToxAlert, risk mapping

Abstract

Prior to 1863 the Kis-Balaton functioned as a natural filter zone, retenting most of the nutrients carried by River Zala. In 1863 by the construction of the Sió sluice control of the water level of Lake Balaton became feasible. As a consequence, marshlands of Kis-Balaton began to disappear and the filtering function started to degrade. Due to these facts water quality of the lake turned into eutrophic by the 1960’s. Main function of the Kis-Balaton Water Protection System is the protection of the water quality of Lake Balaton by retaining most of the nutrients and suspended solids carried by the River Zala and other small watercourses in two reservoirs. Besides this natural cleaning function, however, Kis-Balaton is also a significant nature conservation area under the Ramsar Convention since 1979. Efficiency of the System is continously monitored. However, load presented by diffuse pollution sources such as agricultural runoff cannot be determined. Our goal was to reveal how ecological risk in the stage 2 is determined by external sources, analysing spatial distribution and trends in contamination. For mapping contamination digital ortophoto provided by the Western-Transdanubian Water Authority was used.

Author Biography

  • Nóra Kováts, University of Veszprém, Dept. of Environmental Engineering and Chemical Technology, H-8200 Veszprém, Egyetem Str. 10.

    corresponding author
    kovats@almos.vein.hu

References

Becker, D. S., Ginn, T. C. (1995). Effects of storage time on toxicity of sediments from Puget Sound, Washington. In: Environmental Toxicology and Chemistry. 14(5), 829–835. https://doi.org/10.1002/etc.5620140513

Bendefy, L. (1968). A Balaton vízszintjének változásai a neolitikumtól napjainkig. In: Hidrológiai Közlöny, 6. 257–263.

Bennett, J., Cubbage, J. (1992). Review and Evaluation of Microtox® Test for Freshwater Sediments. Environmental Assessment Program Report, 92-e04

Burton, G.A. Jr. (1991). Assessing freshwater sediment toxicity. In: Environ. Toxicol.Chem., 10(12), 1585–1627. https://doi.org/10.1002/etc.5620101204

Burton, G. A. Jr., Baudo, R., Beltrami, M., Rowland, C. (2001). Assessing sediment contamination using six toxicity assays. J. Limnol., 60(2), 263–267. https://doi.org/10.4081/jlimnol.2001.1.263

Doherty, F. G. (2001). A Review Of The Microtox® Toxicity Test System for Assessing the Toxicity of Sediments and Soils. In: Water Quality Research Journal of Canada, 36(3), 475–518. https://doi.org/10.2166/wqrj.2001.027

Fekete, E., Szabó, S. A., Tóth, Á. (1991). A vízszennyezés ökológiája, Pro Natura Kiadó : Budapest

Jacobs, M. W., Delfino, J. J., Bitton, G. (1992). The Toxicity of Sulphur to Microtox® from Acetonitrile Extracts of Contaminated Sediments. In: Environ. Toxicol. Chem., 11(8), 1137–1143. https://doi.org/10.1002/etc.5620110810

Johnson, B. T., Long, E. R. (1998). Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach. In: Environ. Toxicol. Chem., 17(6), 1099–1106. https://doi.org/10.1002/etc.5620170616

Magyarics, A., Pomogyi, P., Pék T. (1999). A Kis-Balaton Vedőrendszer kialakítása, működésének eredményei. Vízügyi Közlemények, LXXXI. Évfolyam, 4. füzet.

Suter, G. W. (1996). Risk Characterization for Ecological Risk Assessment of Contaminated Sites. Prepared by the Environmental Restoration Risk Assessment Program, Lockheed Martin Energy Systems, Inc., Oak Ridge, Tennessee, ES/ER/TM-200

Svenson, A., Edsholt, E., Rickling, M., Remberger, M., Rottorp, J. (1996). Sediment contaminants and Microtox toxicity tested in a direct contact exposure test. In: Environ. Toxicol. Water Qual., 11(4), 293–300. https://doi.org/10.1002/(SICI)1098-2256(1996)11:4<293::AID-TOX2>3.0.CO;2-4

Tátrai, I., Mátyás, K., Korponai, J., Paulovits, G., Pomogyi, P. (2000). The role of the Kis-Balaton Water Protection System in the control of water quality of Lake Balaton. In: Ecological Engineering, 16(1), 73–78. https://doi.org/10.1016/S0925-8574(00)00091-4

Overton, E. B., Jr., C. B. Henry, I. Mendelssohn (1997). Application of Microtox assay to establish and evaluate the efficacy of in situ burning of oiled marshes. Louisiana Applied Oil Spill Research and Development Program, OSRADP Technical Report series 96–009.

Published

2006-02-15

How to Cite

Kováts, N., Borbély, G., Magyar, I., Szép, Z., Paulovits, G., & Pomogyi, P. (2006). Analysis of spatial distribution of sediment toxicity in the 2nd reservoir of the Kis Balaton Water Protection System. Acta Agraria Kaposváriensis, 10(1), 43-51. https://journal.uni-mate.hu/index.php/aak/article/view/1756

Most read articles by the same author(s)