Transgenic animals as bioreactors
Review
Keywords:
transgenic animal, bioreactor, blood, milkAbstract
Different systems are being studied and used to prepare recombinant proteins for pharmaceutical use. The blood, and even more so the milk, of transgenic livestock animals appear a very attractive source of pharmaceuticals. The cells from these animals are expected to produce well-matured proteins in potentially huge amounts. The development of recombinant DNA technology coupled with the techniques of microinjection and embryo transfer to introduce foreign genes into the germline of animals has provided the basic tools. Cloning of milk proteins in the late 70s and early 80s, followed by the identification and characterisation of promoter and regulatory sequences of milk protein genes, revealed sufficient genetic information to target genes exclusively to mammary tissue and to respond to hormonal signals. In sheep more than 50% of the protein in milk can be encoded by the transgene without compromising the animal’s health or reproductivity. However, the most natural use of this technology must include modifying the protein content of milk by manipulating the milk protein genes themselves. We have developed a chimeric gene to increase kappa-casein content in transgenic mice and rabbits and to examine its effect on the physicochemical properties of milk As we approach the end of the 1990s the prospect of achieving the aim of producing pharmaceuticals in transgenic farm animals is becoming reality: the first human products are on their way through clinical trials.
References
Bosselman, R. A., Hsu, R. Y., Boggs, T., Hu, S., Bruszewski, J., Ou, S., Kozar, L., Martin, F., Green, C., Jacobsen, F. (1989). Germline transmission of exogenous genes in the chicken. Science, 243. 5330–535. https://doi.org/10.1126/science.2536194
Bowen, R. A., Reed, M. L., Schnieke, A., Seidel, G. E. Jr., Stacey, A., Thomas, W. K., Kajikawa, O. (1994). Transgenic cattle resulting from biopsied embryos: expression of c-ski in a transgenic calf. Biol. Reprod., 50. 664–668. https://doi.org/10.1095/biolreprod50.3.664
Breeze, M. (1997). AAT-recent clinical developments and an industry perspective on current regulatory tissues. IBC Conference Proceedings of Transgenic Therapeutics Febr.
Bremel, R. D. (1996). Potential role of transgenesis in daiary production and related areas. Theriogenology, 45. 51–56. https://doi.org/10.1016/0093-691X(95)00354-B
Brunner, J. R. (1981). Cow milk proteins: Twenty-five years of progress. J. Dairy Sci., 64. 1038–54. https://doi.org/10.3168/jds.S0022-0302(81)82682-3
Burdon, T. G., Maitland, K. A., Clark, A. J., Wallace, R., Watson, C. J. (1994). Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol Endocrinol, 8(11), 1528–36. https://doi.org/10.1210/mend.8.11.7877621
Capecchi, M. R. (1989). Altering the genome by homologous recombination. Review. Science, 244. 1288–92. https://doi.org/10.1126/science.2660260
Carver, A. S., Dalrymple, M. A., Wright, G., Cottom, D. S., Reeves, D. B., Gibson, Y. H., Keenan, J. L., Barrass, J. D., Scott, A. R., Colman, A., (1993). Transgenic livestock as bioreactors: stable expression of human alpha-1-antitrypsin by a flock of sheep. Biotechnology (NY), 11. 1263–70 https://doi.org/10.1038/nbt1193-1263
Chandrashekar, V., Bartke, A., Wagner, T. E. (1992). Neuroendocrine function in adult female transgenic mice expressing the human growth hormone gene. Endocrinology, 130. 4. 1802–8. https://doi.org/10.1210/endo.130.4.1547710
Clark, A. J. (1998). Gene expression in the mammary glands of transgenic animals. Biochem Soc. Symp., 63. 133–40.
Clark, A. J., Bessos, H., Bishop, J. O., Brown, P., Harris, S., Lathe, R., McClenaghan, M., Prowse, C., Simsons, J. P., Whitelaw, C. B. A., Wilmut, I. (1989). Expression of human anti-hemophillic factor XI. in the milk of transgenic sheep. Bio/Technology, 7. 487–492. https://doi.org/10.1038/nbt0589-487
Davies, D. T., Holt, C., Christie, W. W. (1993). The composition of milk. Biochemistry of Lactacion. Elsevier, Amsterdam, 1–11.
Devinoy, E., Thepot, D., Stinnakre, M. G., Fontaine, M. L., Grabowski, H., Puissant, C., Pavirani, A., Houdebine, L. M. (1994). High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res., 3. 79–89. https://doi.org/10.1007/BF01974085
Devos, R., Cheroutre, H., Taya, Y., Degrave, W., Van Heuverswyn, H., Fiers, W. (1982). Molecular cloning of human immune interferon cDNA and its expression in eukaryotic cells. Nucleic Acids Res., 10. 2487–501. https://doi.org/10.1093/nar/10.8.2487
Drews, R., Paleyanda, R. K., Lee, T. K., Chang, R. R., Rehemtulla, A., Kaufman, R. J., Drohan, W. N., Lubon, H. (1995). Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc. Natl. Acad. Sci., USA, 92. 10462–6. https://doi.org/10.1073/pnas.92.23.10462
Ebert, K. M., Selgrath, J. P., DiTullio, P., Denman, J., Smith, T. E., Memon, M. A., Schindler, J. E., Monastersky, G. M., Vitale, J. A., Gordon, K. (1991). Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology, 9. 9. 835–8. https://doi.org/10.1038/nbt0991-835
Eyestone, W. H. (1994). Challenges and progress in the production of transgenic cattle. Review. Reprod Fertil Dev., 6. 647–52. https://doi.org/10.1071/RD9940647
Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci., 77. 7380 https://doi.org/10.1073/pnas.77.12.7380
Gordon, K., Lee, E., Vitale, J. A., Smith, A. E,. Westphal, H., Hennighausen, L. (1987). Production of human tissue plasminogen activator in transgenic mouse milk. Biotechnology. 24. 425–8.
Groet, S., Meade, H. (1997). Antitrombin III.-clincal development results and future plans. IBC Conference Proceedings of Transgenic Therapeutics Febr.
Harkins, M., Boyd, R. D., Bauman, D. (1989). Effect of recombinant porcine somatotropin on lactational performance and metabolite patterns in sows and growth of nursing pigs. J. Anim. Sci., 67. 1997–2008. https://doi.org/10.2527/jas1989.6781997x
Hennighausen, L. (1992). The prospects for domesticating milk protein genes. J. Cell. Biochem., 49. 325–32. https://doi.org/10.1002/jcb.240490402
Hennighausen, L., Ruiz, L., Wall, R. (1990). Transgenic animals-production of foreign proteins in milk. Curr. Opin Biotechnol., 1. 74–8. https://doi.org/10.1016/0958-1669(90)90013-B
Hennighausen, L., Westphal, C., Sankaran, L., Pittius, C. W. (1991). Regulation of expression of genes for milk proteins. Biotechnology, 16. 65–74.
Hennighausen, L. G., Sippel, A. E., Hobbs, A. A., Rosen, J. M., (1982). Comparative sequence analysis of the mRNAs coding for mouse and rat whey protein. Nucleic Acids Res., 10. 3733–44. https://doi.org/10.1093/nar/10.12.3733
Hogan, B., Costantini, F., Lacy, E. (1986). Manipulating the mouse embryo. Cold Spring Harbor Laboratory, New York
Houdebine, L. M. (1994). Production of pharmaceutical proteins from transgenic animals. J. Biotechnol., 34. 269–287. https://doi.org/10.1016/0168-1656(94)90062-0
Kolb, A. F., Albang, R., Brem, G., Erfle, V., Gunzburg, W. H., Salmons, B. (1995). Characterization of a protein that binds a negative regulatory element in the mammary-specific whey acidic protein promoter. Biochem. Biophys. Res. Commun., 217. 1045–52. https://doi.org/10.1006/bbrc.1995.2875
Krimpenfort, P., Rademakers, A., Eyestone, W., van der Schans, A., van den Broek, S., Kooiman, P., Kootwijk, E., Platenburg, G., Pieper, F., Strijker, R., (1991). Generation of transgenic dairy cattle using 'in vitro' embryo production. Biotechnology (NY). 9. 844–7. https://doi.org/10.1038/nbt0991-844
Li, S., Rosen, J. M. (1995). Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell. Biol., 4. 2063–70. https://doi.org/10.1006/jmbi.1994.0161
Liu, X., Robinson, G. W., Gouilleux, F., Groner, B., Hennighausen, L. (1995). Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl. Acad. Sci., USA 92. 8831–5. https://doi.org/10.1073/pnas.92.19.8831
Love, J., Gribbin, C., Mather, C., Sang, H. (1994). Transgenic birds by DNA microinjection. Biotechnology (NY). 12. 1. 60–3. https://doi.org/10.1038/nbt0194-60
Maga, E. A., Anderson, G. B., Murray, J. D. (1995b). The effect of mammary gland expression of human lysozyme on the properties of milk from transgenic mice. J. Dairy Sci., 78. 2645–52. https://doi.org/10.3168/jds.S0022-0302(95)76894-1
Maga, E. A., Murray J. D. (1995a). Mammary gland expression of transgenes and the potential for alterning the properties of milk Bio/Technologie, 13. 1452–1457. https://doi.org/10.1038/nbt1295-1452
Massoud, M., Bischoff, R., Dalemans, W., Pointu, H., Attal, J., Schultz, H., Clesse, D., Stinnakre, M. G., Pavirani, A., Houdebine, L. M. (1991). Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits. J. Biotechnol., 18. 193–203. https://doi.org/10.1016/0168-1656(91)90247-S
Niemann, H., Halter, R., Carnwath, J. W., Herrmann, D., Lemme, E., Paul, D. (1999). Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res., 3. 237–47. https://doi.org/10.1023/A:1008999622117
Paleyanda, R. K., Velander, W. H., Lee, T. K., Scandella, D. H., Gwazdauskas, F. C., Knight, J. W., Hoyer, L. W., Drohan, W. N., Lubon, H. (1997). Transgenic pigs produce functional human factor VIII in milk. Nat. Biotechnol., 10. 971–5. https://doi.org/10.1038/nbt1097-971
Rosen, J. M., Li, S., Raught, B., Hadsell, D. (1996). The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. Review. Am. J. Clin. Nutr., 63. 627S–32S. https://doi.org/10.1093/ajcn/63.4.627
Salter, D. W., Smith, E. J., Hughes, S. H., Wright, S. E., Crittenden, L. B. (1987). Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology., 157. 236–40. https://doi.org/10.1016/0042-6822(87)90334-5
Sang, H. (1994). Transgenic chickens -methods and potential applications. Trends in Biotechnology, 12. 415–20. https://doi.org/10.1016/0167-7799(94)90030-2
Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I., Colman, A., Campbell, K. H. (1997). Human factor IX. transgenic sheep produced by transfer of nuclei fromtransfected fetal fibroblasts. Science, 278. 2130–3. https://doi.org/10.1126/science.278.5346.2130
Schoenenberger, C. A., Andres, A. C., Groner, B., van der Valk, M., LeMeur, M., Gerlinger, P. (1988). Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein genetranscription. EMBO J., 7. 169–75. https://doi.org/10.1002/j.1460-2075.1988.tb02797.x
Shamay, A., Solinas, S., Pursel, V. G., McKnight, R. A., Alexander, L., Beattie, C., Hennighausen, L., Wall, R. J. (1991). Production of the mouse whey acidic protein in transgenic pigs during lactation. J. Anim. Sci., 69. 4552–62. https://doi.org/10.2527/1991.69114552x
Velander, W. H., Lubon, H., Drohan, W. N. (1997). Transgenic livestock as drug factories. Sci. Am., 276. 70–4. https://doi.org/10.1038/scientificamerican0197-70
Villa-Komaroff, L., Efstratiadis, A., Broome, S., Lomedico, P., Tizard, R., Naber, S. P., Chick, W. L., Gilbert, W. (1978). A bacterial clone synthesizing proinsulin. Proc. Natl. Acad. Sci., 75. 3727–31. https://doi.org/10.1073/pnas.75.8.3727
Wall, R. J., Pursel, V. G., Shamay, A., McKnight, R. A., Pittius, C. W., Hennighausen, L. (1991). High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc. Natl. Acad. Sci., 88. 1696–700. https://doi.org/10.1073/pnas.88.5.1696
Wall, R. J., Rexroad, C. E., Powell, A., Shamay, A., McKnight, R., Hennighausen, L. (1996). Synthesis and secretion of the mouse whey acidic protein in transgenic sheep. Transgenic Res., 5. 67–72. https://doi.org/10.1007/BF01979923
Whitelaw, C. B., Harris, S., McClenaghan, M., Simons, J. P., Clark, A. J. (1992). Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. J. Biochem., 286. 31–9. https://doi.org/10.1042/bj2860031
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385. 810–3. https://doi.org/10.1038/385810a0
Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I., Colman, A. (1991). High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology, (NY) 9. 830–4. https://doi.org/10.1038/nbt0991-830
Yull, F., Harold, G., Wallace, R., Cowper, A., Percy, J., Cottingham, I., Clark, A. J. (1995). Fixing human factor IX (fIX): correction of a cryptic RNA splice enables the production of biologically active fIX in the mammary gland of transgenic mice. Proc. Natl. Acad. Sci., 92. 10899–903. https://doi.org/10.1073/pnas.92.24.10899
Downloads
Published
Issue
Section
License
Copyright (c) 1999 Bősze Zsuzsanna, Tóth Sz.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

