Study of planting density and canopy cover in open spaces in Budapest

Case Studies Part 1 – Móricz Zsigmond Square

Authors

  • Barnabás Tóth MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design
  • Judit Doma-Tarcsámyi MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design
  • Krisztina Szabó MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

DOI:

https://doi.org/10.36249/4d.70.4728

Keywords:

urban forestry, alles, tree canopy cover, planting density

Abstract

Trees in public open spaces are an important part of the urban green space system, which has to adapt to increasingly difficult conditions due to urbanisation, climate change and human activity. Green spaces are a major factor in improving the microclimate, helping to protect biodiversity and playing an important aesthetic role, so they need to be preserved and enhanced. In our country, since the 2000s, a large number of studies and civil initiatives have highlighted the importance of green spaces, but typically from a quantitative approach. However, improving the quality of planting is an equally important task. Our research assesses the canopy cover of trees in open spaces in Budapest in terms of planting density, with a focus on the planting distance of trees in certain squares and streets and the resulting cover values. In our studies, we have considered the quantitative and qualitative variation in crown canopy cover at the time of planting and in maturity, so we can formulate ideal planting suggestions based on the environment, requirements and characteristics (crown shape, growth vigour) of each taxa. In the series of case studies, we first studied the woody species of one of the most important intermodal nodes of Budapest, Móricz Zsigmond Square and Bartók Béla Street. The canopy cover of the square reaches the ideally defined minimum canopy cover of 25-30% in 5-7 years. Considering canopy cover and planting density, it was found that in 2023 the canopy cover of the trees in the Móricz Zsigmond square averages 13%, while at maturity it will cover more than 50%. This means that about half of the tree crowns will be able to have the highest potential impact in terms of ecosystem services.

Author Biographies

  • Barnabás Tóth, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    PhD student, researcher assistant
    e-mail: Toth.Barnabas@uni-mate.hu

  • Judit Doma-Tarcsámyi, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    assistant lecturer, PhD student
    e-mail: doma-tarcsanyi.judit@uni-mate.hu

  • Krisztina Szabó, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    associate professor, PhD
    e-mail: szabo.krisztina.dendro@uni-mate.hu

References

Antropogén Hatások a Városok Természeti Környezetére, Available online: http://www.geo.u-szeged.hu/~feri/kornyezeti_informatika/ch06s04.html (accessed on 28 May 2023).

Balogh Péter István – Erő Zoltán – Mohácsi Sándor (2007): A budapesti „négyes metró” és a városi szabadterek. 4D - Tájépítészeti és Kertművészeti Folyóirat 5-8.

Böll, Susanne (2018): Stadtbäume der Zukunft - Wichtige Ergebnisse aus dem Forschungsprojekt "Stadtgrün 2021“, 13.

Böll, Susanne (2021). Stadtbäume unter Stress, 8., Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.lwf.bayern.de/mam/cms04/boden-klima/dateien/a98_stadtbaeume_unter_stress_bf_gesch.pdf

Chen, Wendy Y. – Jim, C.Y. (2008): Assessment and Valuation of the Ecosystem Services Provided by Urban Forests. In Ecology, Planning, and Management of Urban Forests; Carreiro, M.M., Song, Y.-C., Wu, J., Eds.; Springer New York: New York, NY, 2008; pp. 53–83 ISBN 978-0-387-71424-0.

Erker, Tedward – Wang, Lei – Lorentz, Laura – Stoltman, Andrew – Townsend, Philip A. (2019): Statewide Urban Tree Canopy Mapping Method. Remote Sensing of Environment, 229, 148–158, doi: https://doi.org/10.1016/j.rse.2019.03.037.

Gaál, Ladislav – Beranová, Romana – Hlavčová, Kamila – Kyselý, Jan (2014): Climate Change Scenarios of Precipitation Extremes in the Carpathian Region Based on an Ensemble of Regional Climate Models. Advances in Meteorology 2014, 1–14, doi: https://doi.org/10.1155/2014/943487.

Gill, Susannah – Handley, J.F. – Ennos, Roland – Pauleit, Stephan (2007): Adapting Cities for Climate Change: The Role of the Green Infrastructure, Built Environment (1978-), 33, 115–133

Grote, Rüdiger – Samson, Roeland – Alonso, Rocío – Amorim, Jorge Humberto – Cariñanos, Paloma – Churkina, Galina – Fares, Silvano – Thiec, Didier Le – Niinemets, Ülo – Mikkelsen, Teis Norgaard – Paoletti, Elena – Tiwary, Abhishek – Calfapietra, Carlo (2016): Functional Traits of Urban Trees: Air Pollution Mitigation Potential. Front Ecol Environ, 14, 543–550, doi:https://doi.org/10.1002/fee.1426.

Hrotkó Károly – Gyeviki Márta – Sütöriné Diószegi Magdolna (2021): Aeroszol Részecskék Kiülepedése És Nehézfém-Tartalma Három Fafaj Fajtáinak Levelein Budapesten, In: Kertgazdaság (1998) 1419-2713 53 1 14-31 Available online: https://m2.mtmt.hu/api/publication/32021229 (accessed on 28 May 2023).

McPherson, E. Gregory – Simpson, James R. (2003): Potential Energy Savings in Buildings by an Urban Tree Planting Programme in California. Urban Forestry & Urban Greening, 2, 73–86, doi: https://doi.org/10.1078/1618-8667-00025.

McPherson, E. Gregory – Xiao, Qingfu – Van Doorn, Natalie S. – Johnson, Nels – Albers, Shannon – Peper, Paula J. (2018): Shade Factors for 149 Taxa of In-Leaf Urban Trees in the USA. Urban Forestry & Urban Greening, 31, 204–211, doi: https://doi.org/10.1016/j.ufug.2018.03.001.

McPherson, E. Gregory (1984): Energy-Conserving Site Design; American Society of Landscape Architects: Washington, D.C; ISBN 978-0-941236-07-2.

Millennium Ecosystem Assessment (2005): Ecosystems and Human Well-Being: Synthesis;, Ed.; Island Press: Washington, DC; ISBN 978-1-59726-040-4.

Nowak, David J. – Crane, Daniel E. – Stevens, Jack C. (2006): Air Pollution Removal by Urban Trees and Shrubs in the United States. Urban Forestry & Urban Greening, 4, 115–123, doi: https://doi.org/10.1016/j.ufug.2006.01.007.

Pauleit, Stephan – Fryd, Ole – Backhaus, Antje – Jensen, Marina Bergen (2020): Green Infrastructures to Face Climate Change in an Urbanizing World. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer New York: New York, NY, 2020; pp. 1–29 ISBN 978-1-4939-2493-6.

Pearlmutter, David – Calfapietra, Carlo – Samson, Roeland – O'Brien, Liz – Krajter Ostoić, Silvija – Sanesi, Giovanni – Alonso Del Amo, Rocío (2017): The Urban Forest: Cultivating Green Infrastructure for People and the Environment, Future City; Springer International Publishing: Cham; Vol. 7; ISBN 978-3-319-50279-3.

Pongrácz Rita – Bartholy Judit – Miklós Erika (2011): Analysis of projected climate change for Hungary using ensembles simulations, Appl Ecol Env Res, 9, 387–398, doi: https://doi.org/10.15666/aeer/0904_387398.

Quigley, Martin F. (2004): Street Trees and Rural Conspecifics: Will Long-Lived Trees Reach Full Size in Urban Conditions? Urban Ecosystems, 7, 29–39, doi: https://doi.org/10.1023/B:UECO.0000020170.58404.e9.

Radó Dezső Terv | Budapest Available online: https://rdt.budapest.hu (accessed on 28 May 2023).

Rahman, Mohamed A. – Smith, Jonathan George – Stringer, Pete – Ennos, Roland (2011): Effect of Rooting Conditions on the Growth and Cooling Ability of Pyrus Calleryana. Urban Forestry & Urban Greening, 10, 185–192, doi: https://doi.org/10.1016/j.ufug.2011.05.003.

Rahman, Mohammad A. – Fleckenstein, Christoph – Dervishi, Vjosa – Ludwig, Ferdinand –Pretzsch, Hans – Rötzer, Thomas – Pauleit, Stephan (2023): How Good Are Containerized Trees for Urban Cooling? Urban Forestry & Urban Greening, 79, 127822, doi: https://doi.org/10.1016/j.ufug.2022.127822.

Rahman, Mohammad A. – Moser, Astrid – Anderson, Marshal – Zhang, Chi – Rötzer, Thomas – Pauleit, Stephan (2019): Comparing the Infiltration Potentials of Soils beneath the Canopies of Two Contrasting Urban Tree Species. Urban Forestry & Urban Greening, 38, 22–32, doi: https://doi.org/10.1016/j.ufug.2018.11.002.

Retkes, József – Tóth, Imre (2006): Lombos fák, cserjék; Botanika Kft.: Budapest, ISBN 978-963-8286-05-5.

Schmidt Gábor – Fekete Szabolcs (2003): Növények a kertépítészetben; Mezőgazda Kiadó, Budapest; ISBN 978-963-286-062-6.

Smith, Ian I. – Dearborn, Victoria K. – Hutyra, Lucy R. (2019): Live Fast, Die Young: Accelerated Growth, Mortality, and Turnover in Street Trees. PLoS ONE 2019, 14, e0215846, doi: https://doi.org/10.1371/journal.pone.0215846.

Sütöriné Diószegi Magdolna – Magyar Lajos – Honfi Péter – Orlóci László – Kiszel Péter – Vass Edit (2021): Magyar Fajták Alkalmazása a Zöldfelületi Sorfák Kínálatában. (2021) Mezőhír: Országos Agrárinformációs Szaklap 1587-060X XXV 7 94-96 Available online: https://m2.mtmt.hu/api/publication/32456695 (accessed on 28 May 2023).

Szabó Krisztina (2023): Klímafák és városfásítás; Budapest; ISBN 978-615-01-7157-9.

Tyrväinen, Liisa – Pauleit, Stephan – Seeland, Klaus – De Vries, Sjerp (2005): Benefits and Uses of Urban Forests and Trees, In Urban Forests and Trees; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp. 81–114 ISBN 978-3-540-25126-2.

Városklíma Műhely Városklíma Kalauz Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://urban-path.hu/~tgal/pdf/Varosklima%20kalauz.pdf (accessed on 18 July 2023).

Wolf, Kathleen – McKeen, Jennifer – Richardson, Gregory – Van Den Bosch, Matilda – Bardekijan, Adrian (2020): Urban Trees and Human Health: A Scoping Review, In IJERPH, 17, 4371

Yang, Jinming – Li, Xulan – Li, Shimei – Liang, Hong – Lu, Huicui (2021): The Woody Plant Diversity and Landscape Pattern of Fine-Resolution Urban Forest along a Distance Gradient from Points of Interest in Qingdao. Ecological Indicators, 122, 107326, doi: https://doi.org/10.1016/j.ecolind.2020.107326.

Downloads

Published

2023-12-29

Issue

Section

Articles

How to Cite

Study of planting density and canopy cover in open spaces in Budapest: Case Studies Part 1 – Móricz Zsigmond Square. (2023). 4D Journal of Landscape Architecture and Garden Art, 70, 14-31. https://doi.org/10.36249/4d.70.4728

Most read articles by the same author(s)