Changing in organic carbon dynamics and biological activities in clay loam brown forest soil by application of municipal sewage sludge

Autores

  • Hosam E. A. F. Bayoumi Hamuda Óbuda University, Rejtő Sándor Faculty of Light Industry and Environmental Protection Engineering, Environmental Protection Engineering Institute, H-1034 Budapest Doberdó Str. 6

DOI:

https://doi.org/10.56617/tl.3718

Palavras-chave:

Alfalfa growth, biochemical and microbial activities, municipal sewage sludge, soil quality

Resumo

A greenhouse pot experiment was conducted to assess the effects of two municipal sewage sludges (MSS) application on change in the dynamics of organic carbon, microbial population, enzymatic activities and alfalfa growth in relation to heavy metal content and nutrient release from sewage sludge in clay loam brown forest soil. The treatment of MSS increases soil organic matter and improves soil structure. Municipal sewage sludge of high heavy metal content (HHM) significantly decreased soil bioproductivity, reduced its biochemical properties, and lowered the microbial contents in comparison with MSS of low heavy metal (LHM) content. Total alfalfa dry matter yield and nitrogen content increases linearly with increasing MSS application rates. Soil treated with MSS rates of 40 and 60 % exhibit higher in crop dry matter, microbial contents and enzymatic activities than the control. Overall, our results demonstrate that soil treated with LHM content can improve soil quality and soil biological and biochemical properties.

Biografia do Autor

  • Hosam E. A. F. Bayoumi Hamuda , Óbuda University, Rejtő Sándor Faculty of Light Industry and Environmental Protection Engineering, Environmental Protection Engineering Institute, H-1034 Budapest Doberdó Str. 6

    hosameaf@gmail.com

Referências

Abusuwar, O.A., El Zilal, A.H. 2010: Effect of chicken manure on yield, quality and HCN concentration of two forage Sorghum (Sorghum bicolor (L.) Moench) cultivars. Agric. Biol. J. N. Am., 1: 27–31.

Ahmed, Kh.H., Fawy, A.H., Abdel-Hady, E.S. 2010: Study of sewage sludge use in agriculture and its effect on plant and soil. Agric. Biol. J. N. Am., 1: 1044–1049. https://doi.org/10.5251/abjna.2010.1.5.1044.1049

Alef, K. 1995: Estimation of soil respiration. In: Methods in Applied Microbiology and Biochemistry. Alef K., Nannipieri P. (Eds.), 215–216. Academic Press, London.

Allen, O.N. 1959: Experiments in soil bacteriology, 3rd Ed. Burgess Publishing Co., Minneapolis, pp. 117.

Arshad, A.M., Soon, K.Y., Ripmeester, A.J. 2011: Quality of soil organic matter and C storage as influenced by cropping systems in northwestern Alberta, Canada. Nutr. Cycl. Agroecosyst., 89: 71–79. https://doi.org/10.1007/s10705-010-9377-1

Atkinson, D., Watson, C.A. 2000: The research needs of organic agriculture–distinct or just part of agricultural research? The BCPC Conference - Pests & Diseases, 151–158.

Baldock, J.A., Smernik, R.J. 2002: Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochem., 33: 1093–1109. https://doi.org/10.1016/S0146-6380(02)00062-1

Banerjee, M.R., BURTON, D.L., DEPOE, S. 1997: Impact of sewage sludge application on soil biological characteristics. Agric. Ecosyst. Environ., 66: 241–249. https://doi.org/10.1016/S0167-8809(97)00129-1

Barral, M.T., Paradelo, R., Moldes, A.B., Dominguez, M., Diaz-Fierros, F. 2009: Utilization of MSW compost for organic matter conservation in agricultural soils of N.W. Spain. Res. Conserv. Recycl., 53: 529–534. https://doi.org/10.1016/j.resconrec.2009.04.001

Basta, N.T., Ryan, J.A., Chaney, R.L. 2005: Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J. Environ. Qual., 34: 49–63. https://doi.org/10.2134/jeq2005.0049dup

Bastida, F., Kandeler, E., Hernández, T., García, C. 2008: Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb. Ecol., 55: 651–661. https://doi.org/10.1007/s00248-007-9308-0

Belyaeva, O.N., Haynes, R.J., Birukova, O.A. 2005: Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol. Fertil. Soils, 41: 85–94. https://doi.org/10.1007/s00374-004-0820-9

Bhattacharyya, P., Pal, R., Chakraborty, A., Chakrabarti, K. 2001: Microbial biomass and activity in a laterite soil amended with municipal solid waste compost. J. Ind. Soc. Soil Sci., 49: 98–104.

Bolan, N.S., Ko, B.G., Anderson, C.W.N., Vogeler, I., Mahimairaja, S., Naidu, R. 2008: Manipulating bioavailability to manage remediation of metal contaminated soils. In: Chemical Bioavailability in Terrestrial Environment (Naidu R. et al., Eds.), pp. 657–678. Elsevier, Amsterdam, The Netherlands. https://doi.org/10.1016/S0166-2481(07)32027-8

Bosatta, E., Ĺgren, G. 1993: Theoretical analysis of microbial biomass dynamics in soils. Soil Biol. Biochem., 26: 143–148. https://doi.org/10.1016/0038-0717(94)90206-2

Brown, G.E., Parks, G.A. 2001: Sorption of trace elements on mineral surfaces: Modern perspectives from spectroscopic studies, and comments on sorption in the marine environment. Intern. Geol. Rev., 43: 963–1073. https://doi.org/10.1080/00206810109465060

Bundela, P.S., Gautam, S.P., Pandey, A.K., Awasthi, M.K., Sarsaiya, S. 2010: Municipal solid waste management in Indian cities. Intern. J. Environ. Sci., 1 (4): 591–606.

Carbonell, G., Pro, J., Gómez, N., Babín, M.M., Fernández, C., Alonso, E., Tarazona, J.V. 2009: Sewage sludge applied to agricultural soil: Ecotoxicological effects on representative soil organisms. Ecotoxicol. Environ. Safety, 72: 1309–1319. https://doi.org/10.1016/j.ecoenv.2009.01.007

Celis, H.J., Machuca, H.A., Sandoval, E.M., Morales, C.P. 2011: Biological activity in a degraded alfisol amended with sewage sludge and cropped with yellow serradela (Ornithopus compressus L.). Chilean J. Agric. Res., 71 (1):164–172. https://doi.org/10.4067/S0718-58392011000100020

Chander, K., Brookes, P.C., Harding, S.A. 1995: Microbial biomass dynamics following addition of metal- enriched sewage sludges to a sandy loam soil. Soil Biol. Biochem., 27: 1409–1421. https://doi.org/10.1016/0038-0717(95)00074-O

Chander, K., Dyckmans, J., Joergensen, R.G.J., Meyer, B.G., Raubuch, M. 2001: Different sources of heavy metals and their long-term effects on soil microbial properties. Biol. Fertil. Soils, 34: 241–247. https://doi.org/10.1007/s003740100406

Cook, B.D., Allan, D.L. 1992: Dissolved organic matter in old field soils: total amounts as a measure of available resources for soil mineralization. Soil Biol. Biochem., 24: 1992, 585–594. https://doi.org/10.1016/0038-0717(92)90084-B

Diacono, M., Montemurro, F. 2010: Long-term effects of organic amendments on soil fertility: A review. Agronomy for Sustainable Development, 30: 401–422. https://doi.org/10.1051/agro/2009040

Doran, J.W., Safley, M. 1997: Defining and assessing soil health and sustainable productivity. In ‘Biological Indicators of Soil Health (Eds. PANKHURST E.C., DOUBE M.B., Gupta R. S.V.V.) pp. 1–28. (CAB International: New York.)

Emmerling, C., Liebner, C., Haubold-Rosar, M., Katzur, J., Schröder, D. 2000: Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region. Plant and Soil, 220: 129–138. https://doi.org/10.1023/A:1004784525209

García, C., Hernández, T., Costa, C., Ceccanti, B., Masciandaro, G. 1993: The dehydrogenase activity of soils an ecological marker in processes of perturbed system regeneration. In: GALLARDO J.F. (Ed.), XI International Symposium of Environmental Biogeochemistry, 89–100.

Goldstein, A.H. 1986: Bacterial solubilization of mineral phosphates: Historical perspective and future prospects. Am. J. Altern. Agric., 1: 51–57. https://doi.org/10.1017/S0889189300000886

Haynes, R.J., Murtaza, G., Naidu, R. 2009: Inorganic and organic constituents and contaminants in biosolids: Implications for land application. Advances in Agronomy, 104: 165–267. https://doi.org/10.1016/S0065-2113(09)04004-8

HENDRICKS, C.W., DOYLE, J.D., HUGLEY, B. 1995: A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol., 61: 2016–2019. https://doi.org/10.1128/aem.61.5.2016-2019.1995

Hernandez-Soriano, M.C., Peña, A., Mingorance, M.D. 2013: Soluble metal pool as affected by soil addition with organic inputs. Environ. Toxicol. Chem., 32: 1027–1032. https://doi.org/10.1002/etc.2159

Hettiarachchi, G.M., Ryan, J.A., Chaney, R.L., Lafleur, C.M. 2003: Sorption and desorption of cadmium by different fractions of biosolids-amended soils. J. Environ. Qual., 32: 1684–1693. https://doi.org/10.2134/jeq2003.1684

Ibekwe, A.M., Angle, J.S., Chaney, R.L., Van Berkum, P. 1995: Sewage sludge and heavy metal effects on nodulation and nitrogen menu fixation of legumes. J. Environ. Qual., 24: 1199–1204. https://doi.org/10.2134/jeq1995.00472425002400060021x

Insam, H. 1990: Are the soil microbial biomass and basal respiration governed by climate regime? Soil Biol. Biochem., 22: 525–532. https://doi.org/10.1016/0038-0717(90)90189-7

Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., Ali, M.I. 2010: Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agric., Ecosyst. Environ., 137 (3-4): 294–307. https://doi.org/10.1016/j.agee.2010.02.015

Jenkinson, D.S. 1988: Determination of microbial biomass carbon and nitrogen in soil. In: Advances in Nitrogen Cycling in Agricultural Ecosystems (Wilson R.J., Ed.), pp. 368–386. C.A.B. International, Wallingford.

Jordán, M.M., MONTERO, A.M.; PINA, S., GARCÍA-SÁNCHEZ, E. 2009: Mineralogy and distribution of Cd, Ni, Cr, and Pb in biosolids-amended soils from Castellon Province (NE, Spain). Soil Sci., 174: 14–20. https://doi.org/10.1097/SS.0b013e3181957492

Karpukhin, M., Ladonin, D. 2008: Effect of soil components on the adsorption of heavy metals under technogenic contamination. Eurasian Soil Sci., 41: 1228–1237. https://doi.org/10.1134/S1064229308110124

Keeney, D.R., Nelson, D.W. 1982: Nitrogen-inorganic forms. In: Methods of soil analysis. Page, A.L., Miller, R.H., Keeney, D.R. (Eds.) 643–698. American Society of Agronomy, Madison. https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Kranert, M., Hafner, G., Berkner, I., Erdin, E. 2008: Compost from sewage sludge – a product with quality assurance system. Water Practice & Technol., 3 (1): 1–8. https://doi.org/10.2166/wpt.2008.008

KWON, J.S., YUN, S.T., LEE, J.H., KIM, S.O., Jo, H.Y. 2010: Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. J. Hazardous Materials, 174: 307–313. https://doi.org/10.1016/j.jhazmat.2009.09.052

Lair, G., Gerzabek, M., Haberhauer, G. 2007: Sorption of heavy metals on organic and inorganic soil constituents. Environ. Chem. Lett., 5: 23–27. https://doi.org/10.1007/s10311-006-0059-9

Lamb, D.T., Ming, H., Megharaj, M., Naidu, R. 2009: Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. J. Hazardous Materials, 171: 1150–1158. https://doi.org/10.1016/j.jhazmat.2009.06.124

Leita, L., De Nobili, M., Mondini, C., Muhlbachova, G., Marchiol, L., Bragato, G., Contin, M. 1999: Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biol. Fertil. Soils, 28: 371–376. https://doi.org/10.1007/s003740050506

Li, Z., Zhou, L. 2010: Cadmium transport mediated by soil colloid and dissolved organic matter: A field study. J. Environ. Sci., 22: 106–115. https://doi.org/10.1016/S1001-0742(09)60081-4

Mantovi, P. Baldoni, G., Toderi, G. 2005: Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res., 39: 289–296. https://doi.org/10.1016/j.watres.2004.10.003

MARTIN, J.P. 1950: Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci., 69: 215–232. https://doi.org/10.1097/00010694-195003000-00006

Masciandaro, G., Ceccanti, B., García, C. 1994: Anaerobic digestion of straw and pig wastewater: II. Optimization of the process. Agrochimica, 3: 195–203.

Mcgrath, S.P., Chang, A.C., Page, A.L., Witter, E. 1994: Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environ. Rev. 2: 108–118. https://doi.org/10.1139/a94-006

Mudgal, V., Madaan, N., Mudgal, A. 2010: Heavy metals in plants: phytoremediation: Plants used to remediate heavy metal pollution. Agric. Biol. J. N. Am., 1: 40–46.

Nachimuthu, G., King, K., Kristiansen, P., Lockwood, P., Guppy, C. 2007: Comparison of methods for measuring soil microbial activity using cotton strips and a respirometer. J. Microbiol. Meth., 69: 322–329. https://doi.org/10.1016/j.mimet.2007.02.002

Nannipieri, P., Sequi, P., Fusi, P. 1996: Humus and enzyme activity. In: Humic substances in terrestrial ecosystems. Piccolo A. (Ed.) 293–328. Elsevier, Amsterdam. https://doi.org/10.1016/B978-044481516-3/50008-6

Nannipieri, P., Ceccanti, B., Cervelli, S., Matarese, E. 1980: Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J., 44: 1011–1016. https://doi.org/10.2136/sssaj1980.03615995004400050028x

Nwuche, C., Ugoji, E. 2008: Effects of heavy metal pollution on the soil microbial activity. Intern. J. Environ. Sci. Technol., 5: 409–414. https://doi.org/10.1007/BF03326036

Page, A.L., Chang, A.C. 1994: Overview of the past 25 years: technical perspectives. In: Sewage Sludge: Land Utilization and the Environment. Clapp, C.E., Larson, R.H., Dowdy, R.H. (Eds.), 3–6. Soil Sci. Soc. Am. Miscellaneous Publ., Madison, WI.

Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., Méndez, A. 2012: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils, 48 (5): 511–517. https://doi.org/10.1007/s00374-011-0644-3

Peckenham, J.M., Nadeau, J.A., Amirbahman, A., Behr, R.S. 2008: Release of nitrogen and trace metal species from field stacked biosolids. Waste Management and Res., 26: 163–172. https://doi.org/10.1177/0734242X07082138

Roig, N., Sierra, J., Martí, E., Nadal, M., Schuhmacher, M., Domingo, L.J. 2012: Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric., Ecosyst. Environ., 158: 41–48. https://doi.org/10.1016/j.agee.2012.05.016

Renato, A., Rocio, V., Jorge, L., Del Aguila, P. 2012: Microbiological and biochemical properties of an agricultural Mexican soil amended with sewage sludge. R. Bras. Ci. Solo, 36: 1646–1655. https://doi.org/10.1590/S0100-06832012000500029

Roca-Perez, L., Martinez, C., Marcilia, P., Boluda, R. 2009: Composting rice straw with sewage sludge and compost effects on the soil-plant system. Chemosphere, 75: 781–787. https://doi.org/10.1016/j.chemosphere.2008.12.058

Saha, J., Panwar, N., Srivastava, A., Biswas, A., Kundu, S., Rao, A.S. 2010: Chemical, biochemical, and biological impact of untreated domestic sewage water use on Vertisol and its consequences on wheat (Triticum aestivum) productivity. Environ. Monitoring and Assessment. 161: 403–412. https://doi.org/10.1007/s10661-009-0756-5

Sánchez-Monedero, A.M., Mondini, C., De Nobili, M., Leita, L., Roig, A. 2004: Land application of biosolids. Soil response to different stabilization degree of the treated organic matter. Waste Management, 24 (4): 325–332. https://doi.org/10.1016/j.wasman.2003.08.006

Schulz, E., Körchens, M. 1998: Characterization of the decomposable part of soil organic matter (SOM) and transformation processes by hot water extraction. Eurosian Soil Sci., 31: 809–813.

Singh, P.R., Agrawal, M. 2007: Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67 (11): 2229–2240. https://doi.org/10.1016/j.chemosphere.2006.12.019

Singh, R.P., Agrawal, M. 2008: Potential benefits and risks of land application of sewage sludge. Waste Manag., 28: 347–358. https://doi.org/10.1016/j.wasman.2006.12.010

SIMS, J.R., HABY, V.A. 1971: Simplified colorimetric determination of soil organic matter. Soil Sci., 112: 137–141. https://doi.org/10.1097/00010694-197108000-00007

Skujins, J. 1976: Extracellular enzymes in soil. Crit. Rev. Microbiol., 4: 383–421. https://doi.org/10.3109/10408417609102304

Stockdale, E., Brookes, P. 2006: Detection and quantification of the soil microbial biomass–impacts on the management of agricultural soils. J. Agric. Sci., 144: 285–302. https://doi.org/10.1017/S0021859606006228

Swift, M.J., Palm, C.A. 2000: Soil fertility as an ecosystem concept: A paradigm lost or regained? In: Accomplishments and changing paradigm towards the 21st Century.

Tabatabai, M.A., Bremner, J.M. 1970: Factors affecting soil aryl-sulphate activity. Soil Sci. Soc. Am. Proc., 34: 427–429. https://doi.org/10.2136/sssaj1970.03615995003400030023x

Vance, E.D., Brookes, P.C., Jenkinson, D.S. 1987: Microbial biomass measurements in forest soils: determination of Kc values and test of hypothesis to explain the failure of the chloroform fumigation- incubation method in acid soils. Soil Biol. Biochem., 19: 381–387. https://doi.org/10.1016/0038-0717(87)90050-2

Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., Pigna, M. 2010: Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr., 10: 268–292. https://doi.org/10.4067/S0718-95162010000100005

Walkley, A., Black, I.L. 1934: An examination of the Degtjareff method for determining soil organic matter and proposed determination of the chromic acid titration method. Soil Sci., 37: 1934, 29–38. https://doi.org/10.1097/00010694-193401000-00003

Wild, A. 1993: Soils and the environment. An introduction. Cambridge University Press, Cambridge, UK.

Yao, H., Xu, J., Huang, C. 2003: Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal–polluted paddy soils. Geoderma, 115: 139–148. https://doi.org/10.1016/S0016-7061(03)00083-1

Zafar, S., Aqil, F., Ahmad, Q. 2007: Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technol., 98: 2557–2561. https://doi.org/10.1016/j.biortech.2006.09.051

Zuhairi, W.Y.W. 2003: Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environmental Geology, 45: 236–242. https://doi.org/10.1007/s00254-003-0871-5

Downloads

Publicado

2014-12-30

Edição

Seção

Cikkek

Como Citar

Changing in organic carbon dynamics and biological activities in clay loam brown forest soil by application of municipal sewage sludge. (2014). TÁJÖKÖLÓGIAI LAPOK | JOURNAL OF LANDSCAPE ECOLOGY , 12(2), 327-344. https://doi.org/10.56617/tl.3718

Artigos Semelhantes

1-10 de 486

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.