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Abstract: Nitrogen (N) is one of the most important nutrients that plants and microbiota need. In general, under 
temperate conditions its availability in soil limits biological production especially on intensively cultivated crop 
fields. Cultivation gradually mitigates organic carbon and nitrogen content of the soil hence a continuous N 
supply is of crucial importance for reasonable crop production. Therefore, N fertilization is a necessity that has 
additional environmental effects. Most of the applied fertilizers contain inorganic N, mainly nitrate, which is 
soluble in water and, accordingly, mobile in the soil. Nitrate can be delivered from the soil by surface runoff or 
percolation to the deeper layers and the ground water. Present study aimed to compare nitrate losses triggered by 
the same precipitation event (40 mm h-1) on different slope steepness (5 and 12%) and soil status (seedbed; 
sealed and crusted condition) on a Cambisol right after inorganic N fertilizer (100 kg ha-1) application using 
laboratory rainfall simulation. Results indicated that at each precipitation event, only the first 0.5 mm runoff 
contained considerable amount of nitrate (~170 mg L-1), while main loss was due to percolation (also ~170 mg L1 
but all along the percolation period). Accordingly, slope steepness (and also surface conditions) affects nitrate 
loss via controlling the volume of infiltrated and percolated water. Namely, the crusted steeper slope had the 
lowest nitrate loss, because most precipitation water was turned to runoff. Evaporation from the soil surface 
between the precipitations generated upward moisture movement in the profile that finally triggered a higher 
nitrate concentration on the surface. This N was supposed to be the reason of the increased nitrate content of 
initial runoff. Accordingly, nitrate loss is inversely proportional to slope steepness, although the effect is 
subordinate. 

 
Introduction 

 
Fertility is one of the most important soil properties that ensures food production for 
humankind. Population increase is higher than ever, which triggers more and more intensive 
use of soils in addition to agricultural area expansion. Soil are believed to be an infinite good, 
even though the danger of soil erosion and degradation increases parallel with the intensity of 
human activity (Barczi and Centeri 2005). FAO, in 2015, declared that soil is a non-renewable 
resource, hence it has been official that we have to handle the soil degradation problem. 
Furthermore, even brownfield regeneration is important (Frantál et al. 2013). It is essential to 
preserve or increase soil fertility, therefore, nutrients removed by the crops must be replaced. 
The best practice for fertilization (and also soil health improvement) would be the application 
of manure (Hati et al. 2008, Maillard et al. 2016) or green manure (cover crops) (Burger et al. 
2017, White et al. 2017, Kassam et al. 2017), even though Castellano and David (2014) 
reported results on rapid incorporation of inorganic nitrogen fertilizers to soil organic matter 
(SOM). Nevertheless, mineral fertilizers recently definitely rule practice (Nishina et al. 2017).  

In most circumstances available nitrogen (N) limits crop production, accordingly, this 
nutrient has to be replaced in the soil in the greatest amount (Shibata et al. 2017). N stored in 
SOM is more stable and after mobilization processes acts as a constant resource for the plants 
generally on a low level. Theoretically, a carbon and SOM saturated soil can provide enough 
N for plant growing. SOM and soil organic carbon (SOC) holding capacity of a soil is a 
function of the active mineral surface area and finally soil texture (Hassink 1997). Cultivation 
removes N from the surface of coarser particles (sand) (Gelaw et al. 2013). 
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N fixation from the atmosphere is performed by microorganism such as Rhizobium sp. but 
most of these species are associated only to some certain plants such as legumes. 
Accordingly, the widespread practice is the application of mineral N fertilizers, those provide 
a high amount of easily available N. On the other hand, easy availability means high mobility 
in the soil, which can trigger N loss by runoff or leaching (Zhang et al. 2016). In addition to 
this, NO2

- and NO3
- ions are harmful for water bodies. They can cause eutrophication of the 

surface water and even diseases reaching the groundwater and migrating to wells (Anció et al. 
2016). Another main part of N loss is due to the increased biological activity of the soil, 
decomposing SOM that triggers higher N2O or NH3 and CO2 emission to the atmosphere 
(Bilandžija et al. 2017, Gagnon et al. 2016, Charles et al. 2017). 

N fertilizer application is a necessity but many environmental circumstances must be taken 
into account to do so such as i.) current need of vegetation; ii.) available N content of the soil; 
iii.) hydrological properties of the field; iv.) proximity of surface waters. However, more and 
more research focuses on the efficiency improvement of N use (Caires et al. 2016); Lassaletta 
et al. (2014) and Snyder et al. (2014) estimated that still half of the applied N amount was 
lost. Loss by leaching usually triggered by extreme hydraulic conditions such as both intense 
rainfalls and droughts that inhibits nitrate uptake by plants within the same growing season 
(Izsáki 2010). Since these extreme hydraulic conditions are non-predictable and out of 
control, one of the most suitable method for measuring their effects is rainfall simulation. The 
application of rainfall simulators has several benefits, including high accuracy replicability 
and almost in situ conditions for extreme precipitation and hydraulic conditions (Centeri et al. 
2011, Szabó et al. 2017a,b). 

The objective of this study was to identify main N losses by runoff and percolation from 
recently tilled crop field. Within this general purpose the special goal was to estimate the role 
of slope steepness and soil status in this process. 
 

Materials and methods 
 

The investigated soil is the uppermost permanently cultivated layer of a calcaric Cambisol 
(IUSS, WRB 2015) located at N47.238759°; E19.642499° between Albertirsa and 
Ceglédbercel, Hungary. The sampled arable land (circa 3ha) is within 50 m distance to the 
Gerje stream (Figure 1). The surface is flat; the ground water depth is 150–200 cm. No N 
fertilization was applied on this field in the previous 5 years. The recently tilled soil was 
sampled on the spring of 2016 and delivered into the lab for rainfall simulation investigations. 
The sample was a composite of nine subsamples from the cultivated layer along a circle of 3m 
in diameter. 

 
Figure 1. Location of the studied crop field 

1. ábra A vizsgált szántóföld elhelyezkedése 
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Particle size distribution was measured by laser diffractometry (Fritsch Analysette 
Microtec 22, Centeri et al. 2015); SOC and TN were determined by a carbon-nitrogen 
analyzer (Tekmar Dohrman Apollo 9000N; Buurman et al. 1996). Ammonium lactate soluble 
potassium (AL-K) and ammonium lactate soluble phosphorus (AL-P) were determined by a 
flame photometer (Sherwood 410) (Burt et al. 2004). 

We used the ELTE Rainfall simulator equipment (Zámbó and Weidinger 2006; Jakab et al. 
2016). The investigated plot size is 100 cm in length, 50 cm in width and 20 cm in depth. 
Rainfall intensity was set to a constant of 40 mm h-1 and permanently monitored with rain 
gauges (Szabó et al. 2015). Intensity fluctuation was below 10% all along the measurements. 
Slope steepness were adjusted to 5 and 12% since these values are the boundaries of soil 
protection measurements in Hungary (Stefanovits et al. 1999). Rainfalls were created using 
deionized water. The total amount of surface runoff and leached water was collected and 
measured.  

Rainfall is created by a single Lechler 460.788 full cone nozzle on 21 kPa pressure which 
provides a constant 40 mm h-1 intensity (KE=18 J m-2 mm-1) (Salles et al. 1999). During the 
rainfalls the total amount of runoff and percolated water were collected and measured. 

NH4NO3 fertilizer (100 kg ha-1 N) was applied on both slope steepness before the 
simulations. Nitrate concentration was measured from runoff and percolated water using the 
spectrophotometric method of Cataldo et al. (1975) by a Jenway 6705 UV-VIS 
spectrophotometer at 414.4 nm. A measurement without fertilizer application was carried out; 
first, in order to measure runoff and leaching NO3

- amounts to be the control. Three 
simulations were applied at both slope steepness: i.) at seedbed soil condition with intact 
fertilizer on the surface; ii.) one week later on a sealed surface; iii.) an additional week later 
on a crusted surface.  

 
Results and discussion 

 
Soil was described as clay loam with less than 1 % SOC content (Table 1). Total nitrogen was 
around 0.05% that resulted a high (19) carbon-nitrogen ratio indicating the dominance of less 
polymerized, more mobile low molecular weighted SOM. N content of this type of SOM, 
however, was in organic form is much more available for mineralization than polymerized 
ones (De Clercq et al. 2015), even though Filep and Rékasi (2011) found no correlation 
between dissolved organic and inorganic N in Hungarian soils. 
 

Table 1. Main properties of the investigated soil SOC: soil organic carbon; TNb: total nitrogen, EC: electric 
conductivity, AL-: Ammonium lactate soluble  

1. táblázat A vizsgált talaj főbb tulajdonságai SOC: szerves talajszén, TNb: összes nitrogén, EC elektromos 
vezetőképesség, AL-: ammónium-laktát oldható, clay: agyag, silt: iszap, sand: homok 

pHdw pHKCl CaCO3 SOC TNb EC AL-K AL-P Mg2+ clay silt sand 
m m-1 mg kg-1 mg kg-1 µS cm-1 mg kg-1 mg kg-1 mg kg-1 <6 µm 6-20 20< 

7.98 7.51 2.9 9788.4 515.4 197.3 6.65 804.6 25.6 27.5 34.3 38.2 
 

On 5% slope steepness runoff intensity was the highest under seedbed condition, while 
sealing and crust formation did not trigger increase in runoff (Figure 1). This phenomenon 
was the result of an earthworm created burrow at the lower edge of the plot. Using this drain 
line, some parts of the surface runoff was leached down and resulted an increase in percolated 
water volume. The efficiency of this drain has increased during the investigation since under 
seedbed condition it took almost 1000 sec to start the percolation after the occurrence of 
runoff, while this value decreased to 300 and 200 sec concerning the second and third 
precipitation respectively (Figure 2). 
 



80 JAKAB Gergely, KARSAI Gergely, SZALAI Zoltán, SZABÓ Judit 

 

 
Figure 2. Runoff and percolated water volumes and their nitrate concentration on 5% slope steepness 1: seedbed 
condition; 2: sealed soil due to the first precipitation; 3: crusted soil due to the first two precipitations; R: runoff; 

P: percolation; thin black line indicates control values without fertilizer 
2. ábra Az átszivárgó és a felszínen lefolyó víz mennyiségének és nitrát koncentrációjának alakulása 5% lejtés 
mellett 1: magágy állapot; 2: az első eső által megtömörített talaj; 3: két eső által kérgesített talaj; R: felszíni 

lefolyás; P: mélybeszivárgás; fekete egyenes: a nitrogéntrágyázás nélküli kontroll érték  
 

For nitrate content the control runoff and percolated values without fertilizer application 
showed considerable difference. Percolated water had one order higher values, even though 
nitrogen fertilizer has not applied for the original in situ soil for ten years. This is in 
accordance with the high electric conductivity value of the soil and suggests that some N was 
initially in inorganic form within the soil. However, N mineralization is presumed to be a 
slow process, Osterholz et al. (2016) reported data on 14.5 kg inorganic N ha-1 d-1 production 
in the uppermost 20 cm, which is quite high and without plant uptake can be a source of N 
loss. 

Regarding nitrate concentration of runoff, always the first ~0.5 mm runoff got the highest 
values (Figure 2). In each case the first sample had the highest nitrate concentration followed 
by a rapid decrease to the control as it was also reported by Garcia-Díaz et al. (2017), 
however, their nitrate values were two orders lower. The very first runoff sample right after 
the fertilizer application, however, showed just a small increase compared to the following 
ones. This might be due to the effect of fertilizer dissolution that needs time. The temporal 
length of decrease stage was also mitigated. On seedbed condition nitrate concentration 
reached the control value at 1600 sec, while it only took 1200 sec on the crusted surface. The 
highest measured values in runoff were in accordance with those of the percolated water. 
Contrarily, there was no relevant change in nitrate concentration of percolated water with 
time. This relatively constant percolated nitrate concentration was very close to the control 
value and to the highest initial value of surface runoff. Although it was extremely high, 
Janssons et al. (2009) measured quite similar values in percolated water after long drought 
period.  

In general, the same tendencies were recorded under 12% slope steepness (Figure 3).  
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Figure 3. Runoff and percolated water volumes and their nitrate concentration on 12% slope steepness 1 – 

seedbed condition; 2 – sealed soil due to the first precipitation; 3 - crusted soil due to the first two precipitations; 
R – runoff; P – percolation; thin black line indicates control values without fertilizer 

3. ábra Az átszivárgó és a felszínen lefolyó víz mennyiségének és nitrát koncentrációjának alakulása 12% lejtés 
mellett 1: magágy állapot, 2: az első eső által megtömörített talaj, 3: két eső által kérgesített talaj, R: felszíni 

lefolyás, P: mélybeszivárgás, fekete egyenes: a nitrogéntrágyázás nélküli kontroll érték  
 

In this case the role of crust development on the surface was quite clear. Runoff has started 
earlier, while its intensity became higher along the repeated precipitation events. The initially 
high runoff concentration fell to the control value more rapidly with the development of crust 
again, even though, this process was ruled by the leaching depth and velocity of the fertilizer. 
Here the first 0.5 mm runoff has relevantly higher nitrate concentration as it was the case on 
5% slope steepness. The main difference was about percolation. At the beginning of 
percolation, a standard concentration of ~ 190 mg L-1 was dropped to over 350 mg L-1; this 
high value, however, was still below the potential concentration. The rest of the percolated 
water had the same standard N concentration (Figure 3). Due to crust formation and sealing 
infiltration and, therefore, percolation were inhibited for the following two precipitations that 
resulted no percolated water during them. 

The first precipitation was fallen to a soil surface where concentrated solid fertilizer 
spheres were distributed. Since no soil loss occurred most of the solid particles were believed 
to settle down into the micro basins of the seedbed surface. Low amount of runoff generated 
N loss was due to moderate dissolution velocity. From the infiltration of this first precipitation 
nitrate got a disperse distribution all along the soil and could be delivered by diffusion and 
moisture movement. After the end of the rainfall surface evaporation sucked pore water from 
the deeper horizons to the surface therefore nitrate concentration gradually increased there as 
it was also hypothesized by Øygarden et al. (2014). This increased and precipitated inorganic 
N value of the surface would be lost by the first 0.5 mm of runoff at the beginning of the next 
precipitation event. During this event nitrate moved downwards again but there was no 
increase in percolated water concentration compared to the control. Although relevant amount 
of nitrate loss was associated with percolation, there was no evidence that fertilizer reached 
the bottom of the monolith.  

Total porosity of the soil was about 50%, while field capacity could be 30%. Since the 
investigation is on 100 dm3 soil means 30 L pore water reserved in the monolith against 
gravitation before the evaporation loss. Theoretically, this 30 L pore water should contain the 
total amount of dissolved fertilizer after the first rainfall because no significant nitrate loss 
was measured. Since nitrate in the fertilizer took 77% by mass the applied value was 15.4 g 
nitrate per plot, which resulted around 0.5 g L-1 concentration in the pore water. The 
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percolated water volume of 9.5 mm under 5% slope steepness contained 0.2 g L-1 
concentration independently from fertilizer application. Although there were weeks between 
the repeated precipitations, N concentration in the percolated water remained exactly the same 
compared to the end of the former rainfall. This value could be the recent solubility value in 
the soil. That suggested, once the nitrate reached its diffuse distribution in the soil layer: 

i.) it was located and stored in the capillary pores; 
ii.) fast percolation via macro pores would not trigger high N loss since the “clear” 

rainwater did not mix with high concentration capillary water (contrarily, N concentration in 
percolated water is high, therefore, in accordance with the results of Meisinger et al. (2015) 
leaching affects capillary pores as well); 

iii.) N loss is determined by the volume of percolated water (of course, in addition to the 
above processes most nitrate would be uptaken by the microbiome and plants).  
 

Conclusion 
 

Rainfall simulation was found to be an applicable tool for N movement in soils; 0.5 m2 plot 
size can be representative under steady environmental circumstances. Taking fast changing 
biological effects such as bioturbation into account, this plot size is not enough to be 
independent from that sort of influence. 

Runoff delivered nitrate loss is of a lower degree compared to percolation. Only the first 
0.5 mm runoff contains considerable volume. Therefore, -at least within the above mentioned 
circumstances- heavy rainstorms and a huge amount of runoff induces less nitrate loss than 
repeated moderate rainfalls with low amount of runoff. Since main N loss is due to percolated 
water it is crucial to create and maintain the water holding capacity of the soil. In this study N 
loss was found to be less on steeper slopes because of the inhibited infiltration that would 
trigger higher runoff and soil loss values and even drought because of the missing moisture. 
Results suggested that temporal N loss is the result of complex processes where slope is just 
one parameter which can be hardly determined as a single variable. Therefore, much more 
measured data are needed to gain more general conclusions. 
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Összefoglalás: A nitrogén (N), mint alapvető makro tápelem nélkülözhetetlen mind a növények mind a 
mikrobióta számára. A mérsékelt égövben és különösen az intenzíven művelt területeken a biológiai produkciót 
a talajból felvehető N mennyisége korlátozza. Az intenzív talajművelés fokozatosan csökkenti a talaj szervesszén 
és N tartalmát ezért a gazdaságos növénytermesztés szempontjából a tápanyagutánpótlás létkérdés. A 
leggyakrabban alkalmazott N trágyák szervetlen nitrogént leginkább nitrátot tartalmaznak, mely vízben jól 
oldódik ezért a talajban kimondottan mozgékony. Következésképpen a kijutatott nitrát mennyiség kisebb-
nagyobb hányada nem hasznosul, hanem a felszíni lefolyás által távozik a területről vagy a mélybeszivárgó víz 
által jut el a talajvízbe. Jelen munka arra keresi a választ, hogy azonos csapadékok (40 mm h-1, laboratóriumi 
esőszimulátor) eltérő lejtőhajlás (5 és 12%) és talajállapot (magágy, tömörödött és kérges) mellett, közvetlenül 
nitrát műtrágyázás (100 kg ha-1) után milyen nitrát veszteségeket okoznak. Minden csapadékeseménynél csak a 
felszínről lefolyó víz első fél mm-ben mértünk megnövekedett nitrát koncentrációt (~170 mg L-1) ugyanakkor a 
jelentős nitrát veszteséget (szintén ~170 mg L-1, azonban az átszivárgó víz teljes mennyiségében az átszivárgás 
egész időtartama alatt) a mélybeszivárgó vízmennyiség okozta. Következésképpen a lejtő meredeksége (és a 
felszín állapota) a talajba, ill. az azon átszivárgó víz mennyiségének szabályozásán keresztül határozza meg a 
nitrátveszteség mértékét. Azaz a meredek, kérges lejtőn mértük a legkisebb nitrát veszteséget, mert a minimális 
beszivárgás miatt a csapadékjelentős része a felszínen folyt le. A csapadékok között a talajfelszín párolgása 
felfelé irányuló vízmozgást indukált a talajban, ami ismét a felszínre emelte a már bemosódott nitrát egy részét. 
Feltehetőleg e felszíni, kicsapódott nitrát mennyiség okozza a következő csapadék kezdeti felszíni lefolyásában 
mért magas koncentrációt. A talaj nitrát vesztesége és a terület lejtése tehát fordítottan arányos, habár az 
összefüggés gyenge.  


