

IMPACT OF AGRO-PROCESSING AMONG SMALL-SCALE FARMERS IN SUB-SAHARAN AFRICA: A SYSTEMATIC LITERATURE REVIEW

Abraham OTHIENO, Arnold CSONKA

Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Páter Károly utca 1., Hungary

ABSTRACT

The potential of agro-processing among farmers in Sub-Saharan Africa (SSA) is immeasurable. Its effects range from the improvement of livelihoods to stimulating commercial agriculture. This research aimed to examine the impact of agro-processing among rural smallholder farmers in SSA, identifying specific themes based on regional influence, contemporary trends, technology and innovation, research methodologies, and existing gaps. This study is based on a Systematic Literature Review of 20 articles selected from a pool of 93 scientific documents focused on agro-processing and its impact on farmers, especially smallholder farmers in rural SSA. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology was applied to select articles from the Web of Science database. The findings showed that in 50% of the studies reviewed, the income effect was the most significant factor, followed by market effects with varying degrees of impact, farmer groups in the form of cooperatives, and profitability as an indicator of price-driven value enhancement, all of which were prominent among smallholder farmers and along the value chains. Agribusiness and agro-processing development also benefit from complementary factors, such as technological innovation like the use of nanotechnology in the agri-food industry, training, extension services, and information sharing that directly influence product quality, shelf-life extension, food safety and security, postharvest management, and biofortification for nutritional improvement in food products. Emerging trends in commercialization, farmers' welfare, and policy reforms highlight the need for sustainable value chain activities. The impact of agro-processing spreads along the value chain stakeholders, underscoring the need for formal systems and solid market integration. Future research should be conducted on livestock products targeting individual countries in the region based on empirical analysis using mixed methods.

Keywords: agribusiness, smallholder farmers, income, value-addition, sustainable

JEL Code: Q13, Q18

INTRODUCTION

Subsistence operations dominate food systems in Sub-Saharan Africa (SSA), marked by low productivity, smallholder farmers, short supply value chains with limited agri-food processing, and minimal use of quality agricultural inputs (Augustin & Cole, 2022). The SSA region earns limited income from agriculture due to inadequate use of modern technology, low yields, and low-income levels, hindering the timely

attainment of United Nations Sustainable Development Goals (especially SDG 1, SDG 2, and SDG 8). SDG 1 aims to eradicate poverty through social protection, improved living standards above 1.90 dollars per day, and equitable access to economic resources, finance, and technology. SDG 2 focuses on ending global hunger through sustainable farming, eradicating malnutrition, increasing agricultural productivity, and improving nutrition and food security. SDG 8 promotes decent work and sustainable economic growth through innovation, job creation, enterprise development, and entrepreneurship in a safe environment (Pawlak & Kołodziejczak, 2020; AfDB, 2016). The region is experiencing rapid urbanization, leading to increased demand for industrialized processed agri-food products, which stimulates importation instead of local procurement (Gutu, 2023). Rural agro-processing has been recognized by the Food and Agriculture Organization (FAO) of the United Nations (UN) as a way to address food insecurity in SSA. The advantages of smallholder agro-processing aid in stabilizing food prices and creating employment among locals and value chain actors as a source of income in activities ranging from packaging, storage, branding, marketing, and distribution (UNCTAD, 2017). This research aims to determine the significance of agro-processing among smallholder farmers in SSA and the research methodologies used on related topics through a Systematic Literature Review method. Therefore, this study aims to answer the following research questions:

1. How does agro-processing impact smallholder farmers in Sub-Saharan Africa?
2. What research methodologies have been used by other authors on relevant topics?

MATERIALS AND METHODS

Preferred Reporting Items for Reviews and Meta-Analyses

The study used relevant scientific articles from the Web of Science database (WoS). Web of Science is one of the leading databases for scientific articles from leading publishers and is widely used in top-tier systematic review journals (Christofi *et al.*, 2021). The WoS database was preferred over SCOPUS as it had longer historical data. Most of the SCOPUS data were duplicates of those from WoS. The WoS initial search yielded 90 articles from 1995 to 2023, while SCOPUS had 61 documents from 2005 to 2023 for SSA countries, based on English language publications, and the specified search words and phrases. For the analysis of current trends and themes, the articles were restricted to the period 2017 to 2023. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines due to its robustness in guiding researchers to gather information from various databases within the established protocol and guidelines, thus eliminating bias in their research work (Harris *et al.*, 2014; Rethlefsen *et al.*, 2021). Miranda *et al.* (2023), Borda *et al.* (2023), and Stewart *et al.* (2023), are some of the studies that used fewer than 100 documents for their analyses using the Systematic Literature Review methodology. This method is recognized for its strength in answering predefined research questions and providing comprehensive results. This study followed the latest PRISMA flow model for clarity and accurate reviews based on identification, screening, and inclusion criteria using a 27-item evidence-based checklist for

reporting (Page *et al.*, 2021). This process is straightforward and user-friendly, as illustrated in *Figure 1*.

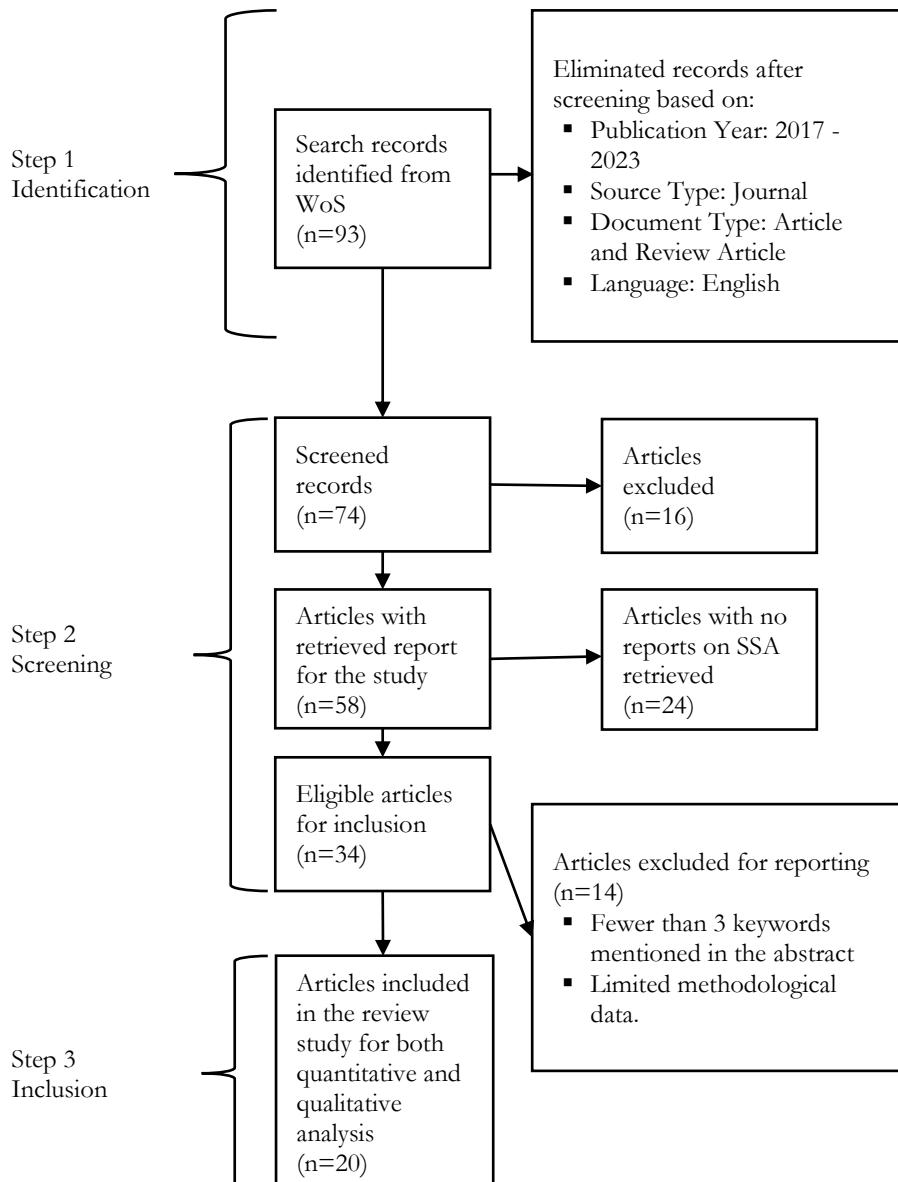
Article Identification

Following PRISMA guidelines, the first step was to develop search criteria to strategically identify relevant research articles from the Web of Science database. Web of Science was chosen because more high-quality articles were found during a preliminary database search compared to SCOPUS. The database contained reliable articles specific to the topic and aligned with the search keywords, making the sample size sufficient to carry out the study (Phethean *et al.*, 2016; Gusenbauer & Haddaway, 2020). The search strings were constructed from the TS (topic – comprising the titles, abstracts, and keywords) using the advanced search option of WoS. (Aguinis & Glaros, 2012; Xiao & Nicholson, 2013; Pisani *et al.*, 2017). The Boolean ‘AND’ combined the study sector keywords, entry and exit level opportunities, and the underlying factors while ‘OR’ was used to broaden the search by including related terms and synonyms (Pranckutė, 2021). The first set of keywords depicted the effect and included words like („impact” OR „benefit” OR „advantages” OR „disadvantages” OR „merits” OR „demerits” OR „influence” OR „effects”). The second set of words focused on the activity and included words such as („crop processing” OR „livestock processing” OR „agricultural processing” OR „agricultural product transformation” OR „agricultural product value addition” OR „value-addition”). The last set of keywords was related to the target group and included words such as („farmers” OR „small-scale farmers” OR „smallholder farmers” OR „rural farmers”).

Article Screening

The identified articles from the Web of Science database were subjected to a screening process based on the publication year (2017-2023), source type (journal), document type (articles and review articles), and language (English). The publication year was relevant to ensure coverage of all calendar years within the specified period. The first search yielded 93 publications. Upon refining articles published between 2017 and 2023, 74 documents appeared.

Inclusion and Exclusion


The 74 documents retained from article screening were subjected to a thorough review, excluding 16 articles with irrelevant titles and limited information in the abstracts. Further assessment of the retained 58 papers led to the exclusion of 24 articles due to limited information about the countries of interest in SSA. The remaining 34 documents were narrowed down to 20 articles after excluding 14 papers with limited methodological details. The final 20 articles were included for the study after careful and thorough reassessment.

Data Analysis

The data analysis was conducted using the retrieved documents' WoS metadata details, which included their publication year and source of the journal, and identified

the effects of agro-processing. Microsoft Excel was used to summarize data from 20 documents and systematically capture the potential effects of agro-processing on rural farmers. This study was restricted to scientific journals published between 2017 and 2023. The articles were organized in columns according to the cited references, highlighted impact, and identified broad themes for further analysis.

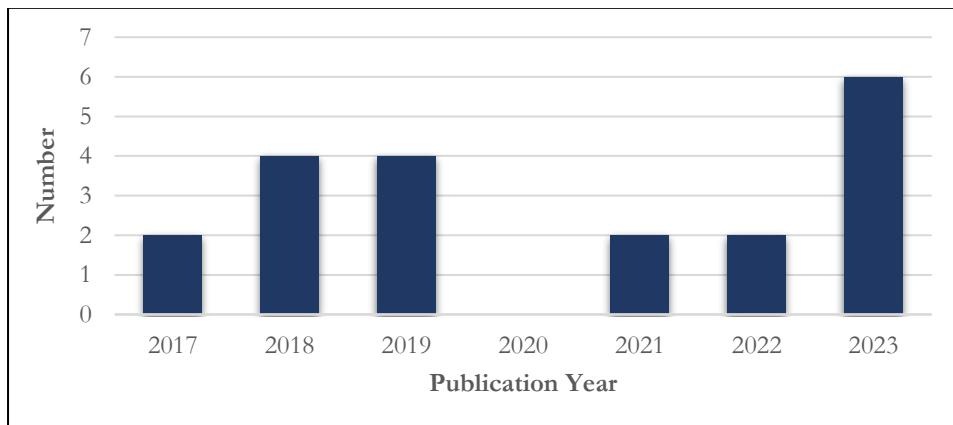
Figure 1: PRISMA Flowchart

Source: Based on *Page et al. (2021)*

RESULTS AND DISCUSSION

The study is based on a qualitative inquiry focusing on journals retrieved from the Web of Science, which was selected for its high-quality scientific research papers. The study focused on publications conducted from 2017 to 2023 that have an identifiable influence on agro-processing among smallholder farmers.

Descriptive Analysis


This study included 20 articles published between 2017 and 2023. The trend shows an increasing interest in agro-processing research, especially its impact on farmers. Areas of focus on the descriptive analysis included the research methodologies, journal quality, publication distribution by year, country, value chain based on product and service, and possible contemporary trends in agro-processing activities.

Research Trends

This section presents the graphical overview of the research trends from *Figure 2 to Figure 5B* of the analysed articles.

Figure 2 depicts the trends in agro-processing publications since 2017. There was a steady rise from 2017 to 2019, but a significant drop occurred in 2020, likely due to the COVID-19 pandemic. During this time, researchers shifted their focus to pandemic-related topics, including healthcare management, economic disruptions, and food supply chain issues, particularly in African nations affected by the agricultural crisis. From 2021 to 2022, publication rates remained moderate, but in 2023, interest in agro-processing surged once again.

Figure 2: Number of Publications per Year

The *Figure 3* illustrates the distribution of journal quality according to Scimago Journal Rank (SJR) categories. The majority of the reviewed publications are found in Q1 and Q2 journals, reflecting a high standard of scientific research. Only three papers were published in Q3-ranked journals, reinforcing the credibility and

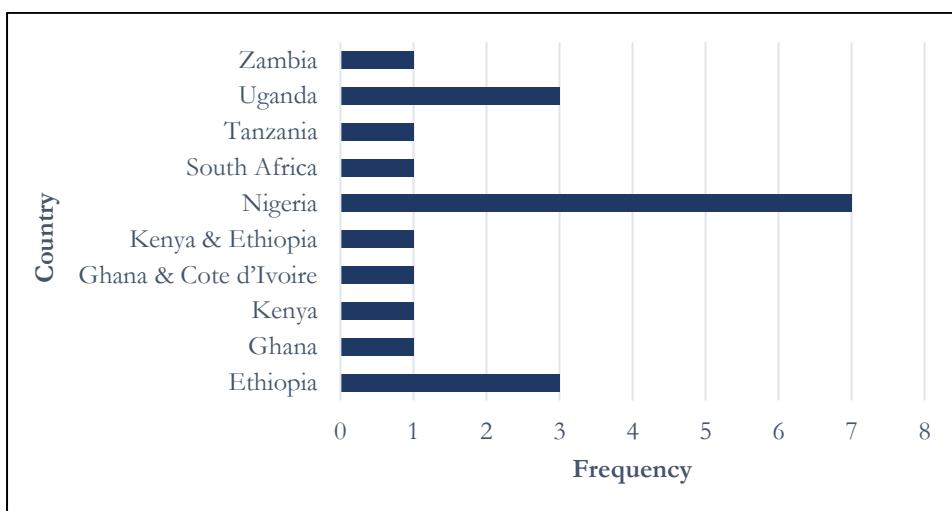
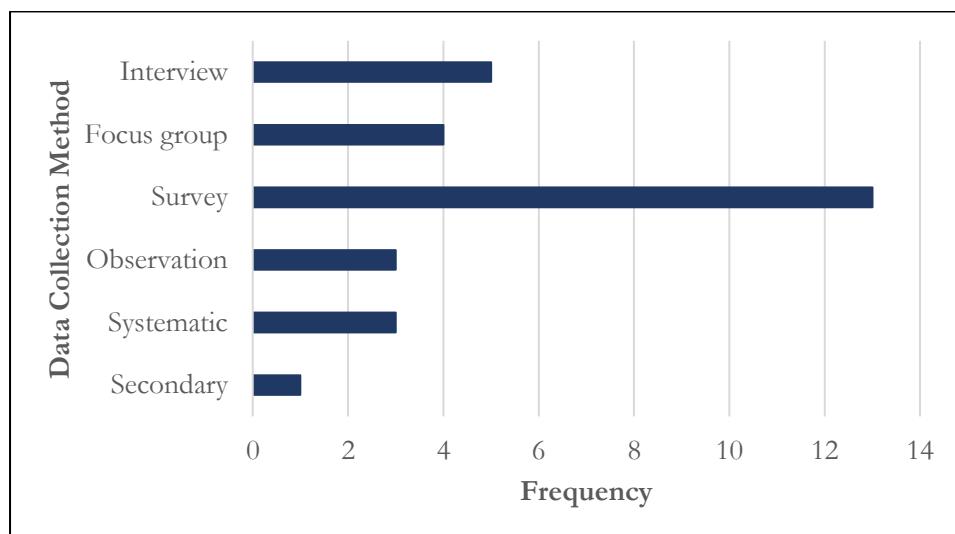

relevance of the chosen literature. This underscores the robust academic foundation that supports the study's findings.

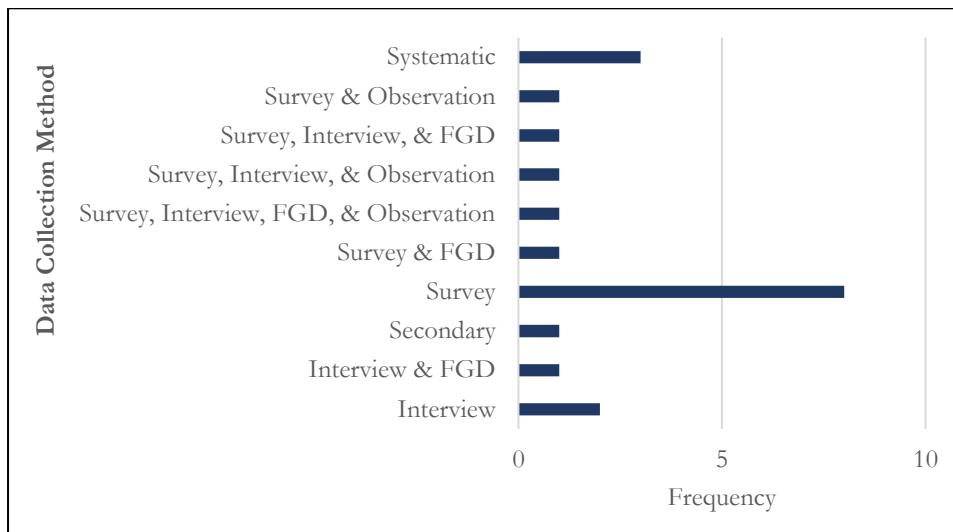
Figure 3: Quality of Journals and Ranking

The *Figure 4* illustrates the distribution of agro-processing publications by country. Most studies originated from Nigeria, followed by Ethiopia and Uganda, while the RSA, Kenya, Ghana, Tanzania, and Zambia contributed fewer papers. This regional variation not only highlights differences in research capacity and investment but also reflects the structural characteristics of each country's agriculture. Nigeria and Ethiopia, with their diverse and commercially oriented agricultural sectors, regard value addition and agro-processing as vital to their agrarian economies. Conversely, countries with agriculture primarily focused on basic production tend to conduct less research on agro-processing activities.

Figure 4: Distribution of Articles by Country



Data Collection Methodologies


Various data collection tools and methods were applied in the reviewed scientific articles. Some studies used single tools, whereas others used mixed methods. Most studies conducted structured and semi-structured surveys for data collection. The survey was used in eight articles, followed by interviews in 5 articles; 4 used focus group discussion (FGD), 3 studies used observation, and a systematic review was used in 3 studies. Lastly, secondary data modelling was done in one paper. Overall, as shown in *Figure 5A* and *Figure 5B*, most studies used a mix of data validation and reliability methodologies.

The *Figure 5A* illustrates how often different data collection methods were used in the reviewed studies. The most frequently employed methods were structured and semi-structured surveys, followed by interviews, focus group discussions, observations, and systematic reviews. This range of data collection techniques enhances the credibility of the findings by promoting data richness and methodological triangulation. Such diversity in methodology strengthens the reliability of the results.

Figure 5A: Frequency of Data Collection Method

The *Figure 5B* offers another perspective on the use of data collection methods in publications. It emphasizes that several studies utilized mixed-methods approaches, combining qualitative and quantitative techniques. This integration enhances the reliability and validity of research findings by providing a comprehensive understanding of the impact of agro-processing. Mixed methodologies also enable a deeper exploration of the complex socio-economic dynamics affecting smallholder farmers.

Figure 5B: Frequency of Data Collection Method

Thematic Analysis

The leading themes captured from the reviewed articles, focusing on the impact of agro-processing on smallholder farmers, include increased income due to value addition and improved product pricing. Value creation in agro-processed products cannot exist independently without considering markets (Apata *et al.*, 2018; Ashiagbor *et al.*, 2019; Maduka *et al.*, 2019; Fadiji *et al.*, 2022; Kyomugisha *et al.*, 2018; Olajide *et al.*, 2021; Onuekwusi *et al.*, 2017; Tamru & Minten, 2023). One of the primary benefits that agro-processors realize is access to premium markets resulting from the work of dedicated value chain actors driving sustainable linkages (Bwahya & Chenjelani, 2023; Cheyo *et al.*, 2024; Siankwilimba *et al.*, 2023; Tamru & Minten, 2023; Teshale *et al.*, 2017; Wosene & Gobie, 2022). Access to sustainable markets should be based on information sharing, through local radio or extension services during crop production to meet the required consumer tastes and preferences (Adeyemo & Okoruwa, 2018; Ayetigbo *et al.*, 2018; Juma Okello *et al.*, 2018; Olajide *et al.*, 2021). The continuity of sustainability depends on agricultural productivity, which determines the level and mode of agro-processing integration activities along the value chains (Aboah *et al.*, 2021; Adeyemo & Okoruwa, 2018). Postharvest management ensures that the quality and safety of agri-food products for consumers and smallholder farmers is achieved, and reduces wastage (Aboah *et al.*, 2021; Adeyemo & Okoruwa, 2018; Aluko *et al.*, 2023).

There is an emerging and growing trend in agricultural production linked to agro-processing. The rise of socioeconomic empowerment among smallholder farmers has led to the formation of cooperatives for producers to gain fair prices for their products, secure consistent buyers, and focus on local traders (Aluko *et al.*, 2023; Cheyo *et al.*, 2024; Onuekwusi *et al.*, 2017; Tamru & Minten, 2023). Product quality, food safety, longer shelf life, and innovation are vital to agro-processing (Ayetigbo *et al.*, 2018; Juma Okello *et al.*, 2018; Alalade *et al.*, 2019; Olajide *et al.*, 2021). The range of innovation can be as basic as the use of solar dryers to more sophisticated approaches, such as biofortification and the use of nanotechnology to improve product nutritional value and extend shelf life,

respectively (Kumi *et al.*, 2023; Maduka *et al.*, 2019; Ayetigbo *et al.*, 2018; Juma Okello *et al.*, 2018). As part of agricultural commercialization, agro-processing has provided its participants with greater profitability by supporting sustainability initiatives among small-scale rural farmers (Aboah *et al.*, 2021; Teshale *et al.*, 2017; Wosene & Gobie, 2022).

To support these initiatives, training and capacity building for rural farming households seem to be gaining traction among development partners, local communities, and peer farmers. Gaining more knowledge in agribusiness has stimulated the need for formal businesses, making the adoption of enterprise registration a priority among smallholder farmers (Adeyemo & Okoruwa, 2018; Bwalya & Chenjelani, 2023; Olajide *et al.*, 2021). Legal operations attract serious value chain actors in premium markets, including those involved in bulk logistics, established traders, and individuals willing to work directly with producers engaged in agro-processing (Alalade *et al.*, 2019).

CONCLUSION

Value addition through agro-processing improves the quality of agribusiness services and products. Appropriate technologies enhance productivity, improve rural agricultural production systems, and promote peer cooperation at the grassroots village level. Smallholder farmers stand to benefit from agro-processing along the agricultural value chains and at various levels of their production activities. The direct effects range from improved household livelihoods with enhanced incomes and employment opportunities, to better nutrition and food security due to increased productivity and postharvest handling, limiting food loss. Indirect impacts include information sharing crucial for product standardization, market linkages, and gaining better value for their products from off-takers and other actors along their specific productive value chain systems. The coordination of value chain participants leads to strategic alliances that unlock systemic bottlenecks that hinder the attainment of sustainable farming such as silo operations among village farmers. Authorities in SSA should formulate legislation and policies that can organize country and locally specific value chains to create cottage industries in rural areas and link them to regional and international markets. Most studies were based on crops (cassava, potato, cocoa, cashew, and maize) and poultry, with no mention of livestock, which could offer a broader view for advancing diversified value chains examination. Systematic literature review is limited in scope; hence, there is a need for quality peer-reviewed research, based on primary data, for proper policy and economic intervention in SSA. Future research should be conducted on specific agro-products with a holistic value chain analysis.

REFERENCES

Aboah, J., Wilson, M. M. J., Bicknell, K. & Rich, K. M. (2021). Ex-ante impact of on-farm diversification and forward integration on agricultural value chain resilience: A system dynamics approach. *Agricultural Systems*, 189, 103043. <https://doi.org/10.1016/j.agsy.2020.103043>

Adeyemo, T., & Okoruwa, V. (2018). Value Addition and Productivity Differentials in the Nigerian Cassava System. *Sustainability*, 10(12), 4770. <https://doi.org/10.3390/su10124770>

AfDB. (2016). *African Development Report. Growth, Poverty, and Inequality Nexus: Overcoming Barriers to Sustainable Development*. African Development Bank

Aguinis, H., & Glavas, A. (2012). What We Know and Don't Know About Corporate Social Responsibility: A Review and Research Agenda. *Journal of Management*, 38(4), 932–968. <https://doi.org/10.1177/0149206311436079>

Alalade, O. A., Oladunni, O. A., Adisa, R. S., Olayode, O. O., & Paul, A. B. (2019). Effect of value addition on farm income of sweet potato farmers in Kwara State, Nigeria. *Journal of Agricultural Extension*, 23(4), 92–98. <https://dx.doi.org/10.4314/jae.v23i4.11>

Aluko, A., Makule, E., & Kassim, N. (2023). Underutilized Casewh Apple Fruit: Its Utility and Development as a Source of Nutrients and Value-Added Products in Tanzania. *Current Research in Nutrition and Food Science Journal*, 11(2), 719–734. <https://doi.org/10.12944/CRNFSJ.11.2.22>

Apata, T. G., Ariyomo, T., & Adebisi, B. R. (2018). The economic analysis of rice and cassava stable food-crops processing in Ekiti State, Nigeria. *Bulgarian Journal of Agricultural Science*, 24(5), 768–776.

Asiagbor, G., Oduro, W., Gyiele, L., Siaw, D., Barnes, V. R., Agbenyega, O., Twum-Ampofo, K., Partey, S., Thevathasan, N., Gordon, A., Gray, R., & Odame, H. H. (2019). Toward sustainable land resources management with agroforestry: Empirical evidence from the Sunyani west district of Ghana. *Agroforestry Systems*, 94(2), 527–537. <https://doi.org/10.1007/s10457-019-00419-y>

Augustin, M. A., & Cole, M. B. (2022). Towards a sustainable food system by design using faba bean protein as an example. *Trends in Food Science & Technology*, 125, 1–11. <https://doi.org/10.1016/j.tifs.2022.04.029>

Ayetigbo, O., Latif, S., Abass, A., & Müller, J. (2018). Comparing Characteristics of Root, Flour and Starch of Biofortified Yellow-Flesh and White-Flesh Cassava Variants, and Sustainability Considerations: A Review. *Sustainability*, 10(9), 3089. <https://doi.org/10.3390/su10093089>

Borda, Á. J., Sárvári, B., & Balogh, J. M. (2023). Generation Change in Agriculture: A Systematic Review of the Literature. *Economies*, 11(5), 129. <https://doi.org/10.3390/economies11050129>

Bwalya, B., & Chenjelani Zulu, P. (2023). Old Wine in New Skins? Community Markets for Conservation and its Performance in Northern Zambia. *SAGE Open*, 13(4). <https://doi.org/10.1177/21582440231220039>

Cheyo, E. J., Nyuyki Mainimo, E., Okello, D. M., Odongo, W., & Kalule, S. W. (2024). Participation and commercialization in producer cooperatives: Insights on the role of cooperative functioning and equity strategies. *Annals of Public and Cooperative Economics*, 95, 815–834. <https://doi.org/10.1111/apce.12462>

Christofi, M., Vrontis, D., & Cadogan, J. W. (2021). Micro-foundational ambidexterity and multinational enterprises: A systematic review and a conceptual framework. *International Business Review*, 30(1), 101625. <https://doi.org/10.1016/j.ibusrev.2019.101625>

Fadiji, A. E., Mthiyane, D. M. N., Onwudiwe, D. C., & Babalola, O. O. (2022). Harnessing the Known and Unknown Impact of Nanotechnology on Enhancing Food Security and Reducing Postharvest Losses: Constraints and Future Prospects. *Agronomy*, 12(7), 1657. <https://doi.org/10.3390/agronomy12071657>

Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. *Research Synthesis Methods*, 11(2), 181–217. <https://doi.org/10.1002/jrsm.1378>

Gutu Sakketa, T. (2023). Urbanisation and rural development in sub-Saharan Africa: A review of pathways and impacts. *Research in Globalization*, 6, 100133. <https://doi.org/10.1016/j.resglo.2023.100133>

Harris, J. D., Quatman, C. E., Manring, M. M., Siston, R. A., & Flanigan, D. C. (2014). How to Write a Systematic Review. *The American Journal of Sports Medicine*, 42(11), 2761–2768. <https://doi.org/10.1177/0363546513497567>

Juma Okello, J., Jogo, W., Kwikiriza, N., & Muoki, P. (2018). Motivations and Cognitive Models associated with Decentralized seed multiplication: experiences from biofortified sweetpotato vine multipliers in Kenya and Ethiopia. *Journal of Agribusiness in Developing and Emerging Economies*, 8(4), 626-641. <https://doi.org/10.1108/JADEE-06-2017-0058>

Kumi, P. G. K., Elolu, S., Odongo, W., Okello, C., & Kalule, S. W. (2023). Where is the Market? Assessing the Role of Dryer Performance and Marketability of Solar-dried Products in Acceptance of Solar Dryers amongst Smallholder Farmers. *Heliyon*, 9(8), e18668. <https://doi.org/10.1016/j.heliyon.2023.e18668>

Kyomugisha, H., Sebatta, C., & Mugisha, J. (2018). Potato market access, marketing efficiency and on-farm value addition in Uganda. *Scientific African*, 1, e00013. <https://doi.org/10.1016/j.sciaf.2018.e00013>

Maduka, O. A., Odoemelam, L. E., Onu, S. E., & Ukoha, J. C. I. (2019). Perceived effect of postharvest and value addition technologies on cocoa farmers' productivity in Akwa Ibom State. *Journal of Agricultural Extension*, 23(4), 84-91. <https://dx.doi.org/10.4314/jae.v23i4.10>

Miranda, F. J., García-Gallego, J. M., Chamorro-Mera, A., Valero-Amaro, V. & Rubio, L. S. (2023). A Systematic Review of the Literature on Agri-food business Models: Critical Review and Research Agenda. *British Food Journal*, 125(12), 4498–4517. <https://doi.org/10.1108/bfj-12-2022-1102>

Olajide, R. B., Sanni, Lateef. O., Atser, G., Dixon, A., & Oladokun, Ibukunoluwa. O. (2021). Information Needs of Cassava Farmer-Processors on Cassava Value Addition Technologies in Oyo State, Nigeria. *Journal of Agricultural Extension*, 25(3), 36–48. <https://doi.org/10.4314/jae.v25i3.4>

Onuekwusi, G. C., Odoemelam, L. E., & Kanu, R. I. (2017). Improving rural women income through cocoyam value addition technologies in Abia State Nigeria. *Journal of Agricultural Extension*, 21(3), 116. <https://doi.org/10.4314/jae.v21i3.11>

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*, n71. <https://doi.org/10.1136/bmj.n71>

Pawlak, K., & Kolodziejczak, M. (2020). The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. *Sustainability*, 12(13), 5488. <https://doi.org/10.3390/su12135488>

Phethean, C., Simperl, E., Tiropanis, T., Tinati, R., & Hall, W. (2016). The Role of Data Science in Web Science. *IEEE Intelligent Systems*, 31(3), 102–107. <https://doi.org/10.1109/MIS.2016.54>

Pisani, N., Kourula, A., Kolk, A., & Meijer, R. (2017). How global is international CSR research? Insights and recommendations from a systematic review. *Journal of World Business*, 52(5), 591–614. <https://doi.org/10.1016/j.jwb.2017.05.003>

Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today's Academic World. *Publications*, 9(1), 12. <https://doi.org/10.3390/publications9010012>

Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., Koffel, J. B., PRISMA-S Group, Blunt, H., Brigham, T., Chang, S., Clark, J., Conway, A., Couban, R., De Kock, S., Farrah, K., Fehrmann, P., Foster, M., Fowler, S. A., ... Young, S. (2021). PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. *Systematic Reviews*, 10(1), 39. <https://doi.org/10.1186/s13643-020-01542-z>

Siankwilimba, E., Mumba, C., Hang'ombe, B. M., Munkombwe, J., Hiddlestone-Mumford, J., Dzvimbo, M. A., & Hoque, M. E. (2023). Bioecosystems towards sustainable agricultural extension delivery: Effects of various factors. *Environment, Development and Sustainability*, 26(9), 21801-21843. <https://doi.org/10.1007/s10668-023-03555-9>

Stewart, R., Langer, L., Da Silva, N. R., Muchiri, E., Zaranyika, H., Erasmus, Y., Randall, N., Rafferty, S., Korth, M., Madinga, N. & De Wet, T. (2015). The Effects of Training, Innovation and New Technology on African Smallholder Farmers' Economic Outcomes and Food Security: A Systematic Review. *Campbell Systematic Reviews*, 11(1), 1-224. <https://doi.org/10.4073/csr.2015.16>

Tamru, S., & Minten, B. (2023). Value addition and farmers: Evidence from coffee in Ethiopia. *PLOS ONE*, 18(1), e0273121. <https://doi.org/10.1371/journal.pone.0273121>

Teshale, T., Woldeamanuel, T., Bekele, T., Alemu, A., & Pretzsch, J. (2017). Market Channels for Highland Bamboo Poles Originated from Hula District, Sidama Zone Southern Ethiopia. *Small-Scale Forestry*, 16(4), 469–485. <https://doi.org/10.1007/s11842-017-9365-2>

UNCTAD (2017). *The role of science, technology, and innovation in ensuring food security by 2030*. United Nations Conference on Trade and Development. https://unctad.org/system/files/official-document/dtlstict2017d5_en.pdf

Wosene, G., & Gobie, W. (2022). Value chain analysis of tomato: The case of Bure, Jabitehinan and North Mecha districts of Amhara regional state, Ethiopia. *Journal of Agriculture and Food Research*, 7, 100272. <https://doi.org/10.1016/j.jafr.2022.100272>

Xiao, S. H., & Nicholson, M. (2013). A Multidisciplinary Cognitive Behavioural Framework of Impulse Buying: A Systematic Review of the Literature. *International Journal of Management Reviews*, 15(3), 333–356. <https://doi.org/10.1111/j.1468-2370.2012.00345.x>

Corresponding author:

Abraham OTHIENO

Hungarian University of Agriculture and Life Sciences
2100 Gödöllő, Páter Károly Street 1., Hungary
Tel.: +36 (70) 402-5621
e-mail: othieno.abraham.ngondo@phd.uni-mate.hu

© Copyright 2025 by the authors.

This is an open-access article under the terms and conditions of the Creative Commons Attribution (CC-BY-NC-ND) license 4.0.

