

APPLYING ANALYTIC HIERARCHY PROCESS METHODOLOGY IN DETERMINING CRITICAL CHALLENGES OF URBAN BIG DATA IN A DEVELOPING CITY: THE CASE OF TEHRAN

Mahla SHOJAE ANARI, Ákos JAKOBI

Eötvös Loránd University, 1053, Budapest, Egyetem tér 1-3. Hungary

ABSTRACT

Although urban big data holds significant potential for transforming the way cities are managed, harnessing this potential requires overcoming major challenges, particularly in developing countries like Iran. Obstacles like policy gaps, legal barriers, limited resources for data management and infrastructure or even the low level of community engagement and the lack of technological capabilities could backward the development of becoming a real data-driven smart city. This study aims to address the understanding of this issue, by identifying and evaluating urban big data challenges critically, and to formulate policy-related support for governmental bodies in a country considered to be a developing information society. After thorough analysis of academic publications we identified 32 urban big data challenges in Iran, which then were systematically evaluated and ranked by Analytic Hierarchy Process (AHP) methodology based on expert surveys. Outcomes confirmed that although social, educational and financial challenges have been perceived, the most important ones are of political and governmental origin.

Keywords: AHP methodology, big data, urban development, Iran

JEL codes: R58, O33

INTRODUCTION

The integration of big data in urban smart city systems brings both opportunities and challenges, having a significant impact on technological advancement and application strategy innovation. A smart city environment is meticulously structured and is under constant surveillance through the pervasive integration of information and communication technologies (ICT) (Neirotti *et al.*, 2014). Over the last two decades, the notion of smart city has progressively gained eminence within scholarly discourse and international policy frameworks (Albino *et al.*, 2015). This growing recognition can be attributed to the forward momentum the smart city concept has garnered as a strategic vision aimed at enhancing urban economies, transportation networks, environmental equilibrium, societal well-being, quality of life, and municipal administration (Abella *et al.*, 2017). The recent widespread proliferation of extensive data resources has played a pivotal role in driving the metamorphosis of smart city environments (Bibri, 2019; Rabari & Storper, 2014). The term “big data” often signifies huge and intricate databases that include the digital imprints of human activities, and its aspects might be specified in terms of quantity or volume, analytical approaches, or organizational consequences (Lim *et al.*,

2018). Also, according to De Mauro et al. (2015) “Big Data is the information asset characterized by such a high volume, speed, and variety to require specific technology and analytical methods for its transformation into value” (De Mauro et al., 2015, p. 102).

Urban Big Data, encompassing diverse datasets from urban environments, provides valuable insights into transportation patterns, environmental conditions, and social interactions. This information aids city planners, policymakers, and researchers in making informed decisions to enhance urban infrastructure and tackle challenges associated with urbanization. In the context of Iran, the utilization of urban big data comes with its set of challenges. Ensuring the quality and integration of data from disparate sources is pivotal. Addressing data requires compatibility across information from government agencies, private entities, and various sources. Furthermore, privacy concerns occur because of the collecting of personal information via urban big data. Finding a balance between collecting insights and protecting individual privacy requires considerable consideration and the construction of strong legal frameworks. The limited technological infrastructure and sanction in Iran pose obstacles to the efficient collection, storage, and processing of large volumes of urban big data. Therefore, overcoming these challenges requires significant investments in advanced technologies and data management systems.

Access to relevant urban big data in Iran may be restricted due to proprietary concerns or a lack of data-sharing mechanisms. Encouraging open data initiatives and developing policies to facilitate data sharing can foster transparency and collaboration among stakeholders. Furthermore, capacity building seems to be crucial for local professionals, government officials, and researchers to develop skills in data analytics and interpretation. Also, training programs and educational initiatives play a significant role in leveraging the potential of urban big data. Clear and robust regulatory frameworks are essential to govern the collection, storage, and usage of urban big data, while developing and enforcing policies that balance innovation with ethical considerations could help building public trust and ensuring the responsible use of data. On the other hand, understanding cultural and social factors influencing data generation and usage are also vital for effective urban planning in Iran. Tailoring strategies to the local context and considering community perspectives can enhance the relevance and acceptance of data-driven initiatives. Addressing these challenges is critical for Iran to fully harness the potential of urban big data, contributing to the creation of sustainable, efficient, and liveable urban environments.

The aim of our study is therefore to identify, understand and evaluate urban big data challenges critically and to formulate policy-related support for governmental bodies in a country considered to be a developing information society. The research aims to rely on expert inputs, offering a comprehensive overview of the issues, while it also aims to develop a prioritization framework for assessing the significance and prevalence of the identified challenges in Tehran and in a broader regional context.

MATERIALS AND METHODS

Our study applies an exploratory technique to investigate the obstacles of utilizing urban big data in Iran, a topic that remains underexplored in regional scientific² discussions of Iran to date. When a phenomenon is underexplored or poorly

understood, exploratory research is especially useful, since it identifies major problems and challenges by asking “why” and “how” questions (Creswell, 2014). This methodology aligns with the study's goal of finding key concerns in urban big data without relying on predefined theoretical frameworks.

As indicated on the website of Numbeo, Tehran is the fifth city that wastes time in traffic jams. According to this website, Iran is the worst in the world. Tehran is the 218th city that loses the most time in traffic congestion out of 222. The neglect of vital issues, such as dynamic pricing based on pollution levels, the absence of infrastructure in that nation, and people's disobedient nature, aggravates this problem. The challenges mentioned above suggest that urban big data is essential for traffic management and city planning; thus, effective measures and data-backed solutions are required to combat these issues (Babrami *et al.*, 2021).

To ensure the inclusion of people with pertinent experience in urban big data, a deliberate sampling methodology was used. For qualitative research that seeks to collect specific and relevant data from informed participants, purposeful sampling seems perfect (Palinkas *et al.*, 2015). By applying such expert choosing technique, our research could have identified the most important urban big data challenges and provided a thorough summary of those, as well as attempted to create a framework for prioritization to determine the importance and frequency of such issues in Tehran. Altogether 20 specialists were selected based on their expertise in areas such as urban geography, data collection, -storage, -analysis, -visualization and consultancy services. To guarantee a diverse range of viewpoints that encompass the multiple industries advancing urban big data in Iran, participants were selected from academic institutions, research parks, smart transportation systems, startups, and venture-backed projects (Babrami *et al.*, 2021).

In the initial stages, just before performing the expert survey, our preparatory research identified 32 urban big data challenges in Iran, that were compiled after a thorough analysis of academic publications on urban big data and smart cities, as well as by studying of reports and documents from the Tehran Municipality and other pertinent institutions. Each of the 32 challenges was supported by references to relevant literature to maintain scientific rigor and to minimize subjectivity by explaining prior research approaches and confirming why it should be included in our study.

Once the 32 challenges had been identified, a survey was conducted with experts in the field to measure the relative importance of each challenge. Crucially, the procedure did not presume a set quantity of high-priority challenges. Instead, the issues that stood out in terms of urgency and relevance were identified by analyzing expert comments and the questionnaire. This assessment led to the identification of 17 difficulties as the most important ones in Tehran's urban big data setting.

To customize the ranking, our study applied *Analytic Hierarchy Process (AHP)* methodology, which is ideal for complicated decision-making and multi-criteria evaluation (Boyd & Crawford, 2012). The AHP method was implemented by structuring the problem (step 1), where the ultimate purpose was to prioritize urban big data concerns in Tehran. Out of 32 possible difficulties, based on expert inputs, only the 17 most important challenges, which served as alternatives, were chosen for further investigation. Prioritization factors, such as economic impact, policy relevance, and feasibility, were organized hierarchically to guide the review. Following that, experts

were asked to conduct pairwise comparisons (step 2) of the 17 challenges using a nine-point scale, evaluating their relative importance concerning the criteria. Each comparison involved evaluating the relative significance of one difficulty against another, with numerical values representing varying degrees of importance. Then, the calculation of priority weights was done (step 3), for which a pairwise comparison matrix (A) was constructed, with each element (a_{ij}) showing the relative importance of challenge i compared to challenge j . For example, if $a_{ij}=3$, it means that challenge i is moderately (namely three times) more important than challenge j . Moreover, priority weights (w_i) are calculated by normalizing the matrix and solving for the eigenvector corresponding to the largest eigenvalue (λ_{\max}). This eigenvector provides the relative priority of each challenge in the set. The consistency ratio (CR) indicates reasonable consistency and is computed as $CR=CI/RI$, where CI is the consistency index, where $CI=(\lambda_{\max} - n)/(n - 1)$, with n being the matrix size, and RI is the Random Index, based on the size of the matrix (e.g., for $n=10$, $RI=1.49$). A CR value lower than 0.1 indicated acceptable consistency, confirming that the evaluations were reliable. The final prioritization ranks the challenges in order of importance and assists decision makers improve urban management and use big data (Selmi *et al.*, 2016).

For final prioritization and categorization of difficulties the ranked list of the 17 most important challenges was created by adding the weighted values for each criterion. Following that, these difficulties were categorized into four groups: socio-cultural, educational, political, and economic. Although our initial perception of the underlying nature of the challenges led to this categorization, it has now been further improved through a review of pertinent literature. As per these models, every dimension denotes unique yet connected elements that significantly impact the incorporation of technology and data in urban management systems. The economic dimension encompasses issues such as resource allocation, investment adequacy, cost-benefit efficiency, and overall financial sustainability, which determine whether cities possess the necessary resources to develop, maintain, and scale big data infrastructures (Thakuriah *et al.*, 2017). In parallel, the political dimension involves governance, policymaking, regulatory frameworks, and inter-agency coordination; research indicates that unclear policies and insufficient political will can obstruct the deployment of even the most advanced technical solutions (Razavian *et al.*, 2024). Moreover, the socio-cultural and educational dimensions focus on public attitudes, community engagement, cultural readiness, and trust in data-driven governance, underscoring that the success of urban data initiatives depends not only on technological capabilities but also on the willingness of citizens and stakeholders to embrace a data-centric approach (Kitchin & Lauriault, 2018).

This four-group approach is supported by empirical and comparative evidence from a variety of interdisciplinary research and policy evaluations. Complex policy models, such as those created by Alkin & Christie (2004), demonstrate the inextricable link between economic, political, and social aspects, with sociocultural and political challenges frequently having a bigger impact on the success of urban data efforts than technical issues alone. Case studies evaluating urban policy challenges - such as those examining five-year development plans in Iran - reveal that governance and cultural barriers frequently receive higher priority over purely technical issues, highlighting the need for targeted interventions that address these critical areas (Razavian *et al.*, 2024).

This comprehensive framework not only facilitates a nuanced analysis of the obstacles to effective big data integration but also informs the development of strategic, context-specific policies that can enhance the sustainability and efficiency of urban management systems (*Jiang et al.*, 2020).

RESULTS AND DISCUSSION

Table 1 presents 32 key challenges associated with the implementation and management of urban big data in Iran, based on library studies. These challenges cross several dimensions, including legal, technical, economic, and socio-cultural factors. Among the most outstanding challenges are legal constraints, the lack of a strategic urban planning framework, and limited resources for data management and infrastructure. Moreover, the challenges of data complexity, competition with large companies, and a lack of mentorship highlight the structural and operational barriers within the ecosystem. The coverage of sanctions, government policies, and social attitudes toward technology further underscores the intricate interplay between external pressures and internal capabilities in the urban big data landscape of Iran (*Govindan et al.*, 2015).

Table 1: Identified urban big data challenges in Iran

Challenge	Description	Reference
Legal issues	Lack of clear, consistent laws governing big data usage	Neirotti et al. (2014) Supreme Council of Cyberspace (Iran) (2018) European Commission (2020)
Lack of supportive government policies, government policies	Inadequate strategic frameworks to promote big data initiatives	Albino et al. (2015) Supreme Council of Cyberspace (Iran) (2018) European Commission (2020)
Insufficient data privacy laws	Outdated or weak privacy rules that hinder data sharing	European Union Agency for Fundamental Rights (FRA) (2018) Kitchin (2016)
Data security concerns	Risks related to unauthorized access and data breaches	Kitchin (2016) European Commission (2020)
Lack of interoperability standards	Difficulties in integrating diverse systems and data formats	Shadroo & Rahmani (2018)
Lack of data digitization	Insufficient conversion of analogue records into digital formats	World Bank (2017)
Fragmented data sources	Data stored in isolated silos with little integration	Janssen et al. (2012)
Data quality issues	Inconsistent, incomplete, or inaccurate data that hinders analysis	Keyvanpour & Moradi (2014)
Absence of online big data and their free sharing	Absence of centralized systems for integrating and analyzing data	Keyvanpour & Moradi (2014)
Limited resources for data management and infrastructures	Insufficient hardware, networks, and computational capacities to support big data	Keyvanpour & Moradi (2014) Kitchin (2014) Neirotti et al. (2014) Bolici & Mora (2015)
Insufficient skilled personnel	A shortage of professionals trained in big data analytics and management.	Shadroo & Rahmani (2018) McAfee & Brynjolfsson (2012)
Lack of urban big data professional training	Limited educational initiatives to build big data expertise	McAfee & Brynjolfsson (2012)

Lack of knowledge about urban big data improvement potentials in government services	Stakeholders' limited understanding of the advantages of big data	Janssen et al. (2012) McAfee & Brynjolfsson (2012)
Low culture of organizations in recognizing big data importance and sharing knowledge	Organizational inertia and reluctance to adopt new technologies	Davenport (2014)
Economic and funding obstacles	Limited funding for big data projects and innovation	Davenport (2014) McAfee & Brynjolfsson (2012) Neirotti et al. (2014)
Lack of tax incentives	Insufficient funding mechanisms and support for startups and innovation	Davenport (2014)
Lack of a strategic and urban planning plan	Inadequate policies and procedures for managing data quality, ownership, and usage	Janssen et al. (2012) European Commission (2020) Albino et al. (2015) Bibri (2019) Bolici & Mora (2015)
Lack of data digitalization in some data generation resources and failing to aggregate them	Challenges in merging heterogeneous data from diverse sources	Keyvanpour & Moradi (2014) Kitchin (2014)
Insufficient data analytics tools	Lack of advanced platforms for processing and analyzing data	Shadroo & Rahmani (2018)
Complex and heterogeneous data types	Managing varied data formats (structured and unstructured) increases complexity.	Kitchin (2014)
Inadequate sensor and IoT infrastructure	Limited deployment of sensors and IoT devices needed for comprehensive data collection	Keyvanpour & Moradi (2014)
Lack of international relations in the urban big data context	Weak cooperation among government, industry, and academia	Neirotti et al. (2014) Cardullo & Kitchin (2019)
Lack of technical context for developing open data	Insufficient collaboration across different sectors for integrated solutions	Neirotti et al. (2014) Bolici & Mora (2015)
Insufficient public-private collaboration	Limited joint initiatives between government agencies and private companies.	Neirotti et al. (2014)
Poor citizen engagement	Low levels of public participation in big data and smart city projects	Cardullo & Kitchin (2019)
Limited trust in data initiatives	Skepticism from citizens and organizations regarding data use and protection	Cardullo & Kitchin (2019)
Social and cultural attitudes toward technology	Societal or organizational norms that discourage open data exchange.	Janssen et al. (2012) Cardullo & Kitchin (2019)
Privacy and confidentiality concerns	Challenges in protecting personal and sensitive information.	European Union Agency for Fundamental Rights (FRA) (2018) Kitchin (2016)
Sanctions	Concerns about fairness, bias, and discrimination in algorithmic decision making	Katzman (2020).
Lack of market for urban big data supply and demand	Sanctions significantly hinder Iran's urban big data ecosystem by restricting access to advanced technologies, international investments, and collaborative research.	Davenport (2014) Bibri (2019)
Inadequate benchmarking and performance metrics	Lack of standardized measures to evaluate the success of big data initiatives	Neirotti et al. (2014) Albino et al. (2015)
Limited scalability of big data solutions	Challenges in scaling systems as data volume and complexity grow	Shadroo & Rahmani (2018) Keyvanpour & Moradi (2014)

As mentioned above, expert interviews have identified 17 difficulties out of the complete list as most important ones. The AHP analysis highlighted significant barriers such as the lack of market for urban big data supply and demand, insufficient professional training, and inadequate knowledge about urban big data applications in government services (Han *et al.*, 2019). The analysis also emphasized economic and funding obstacles, alongside government policy gaps and legal issues, as key impediments to progress. Notably, cultural attitudes toward technology and the absence of collaborative knowledge sharing further compounded these challenges. The findings from the AHP analysis outlined a framework for addressing these barriers through targeted policy interventions, enhanced training programs, and fostering an environment conducive to open data sharing and innovation in urban big data initiatives (Janssen *et al.*, 2017).

The most important challenges identified through the AHP model were categorized into four groups based on thematic analysis (*Table 2*). Each category reflects a distinct domain of influence. Financial and economic challenges include issues related to resource allocation and economic policies, while political and governmental challenges focus on governance and legal barriers. Educational challenges highlight the lack of knowledge and training, while social and cultural challenges address societal attitudes and organizational practices. This grouping simplifies the analysis of challenges by grouping them into coherent domains of impact.

Table 2: Classification of the most important big data challenges in Iran

Categories	17 Challenges
Financial and economic challenges (priority level = 0.222)	<ul style="list-style-type: none"> - Lack of tax incentives - Economic and funding obstacles - Lack of market for urban big data supply and demand - Unsupportive policies for urban big data development
Political and governmental challenges (priority level = 0.675)	<ul style="list-style-type: none"> - Government policies - Sanctions - Legal issues - Lack of international relations in the urban big data context - Lack of a strategic and urban planning plan - Lack of technical context for developing open data - Lack of data digitalization in some data generation resources and failing to aggregate them - Limited resources for data management and infrastructures - Absence of online big data and free sharing
Educational challenges (priority level = 0.058)	<ul style="list-style-type: none"> - Lack of urban big data professional training and mentors - Lack of knowledge about urban big data improvement potentials in government services
Social and cultural challenges (priority level = 0.044)	<ul style="list-style-type: none"> - Social and cultural attitudes toward technology - Low culture of organizations in recognizing and understanding the importance of big data - Low culture of sharing big data knowledge among experts in the field

The AHP analysis highlighted significant barriers such as the lack of market for urban big data supply and demand, insufficient professional training, and inadequate

knowledge about urban big data applications in government services. Economic and funding obstacles, government policy gaps, and legal issues were also identified as key impediments to progress. Additionally, cultural attitudes toward technology and the absence of collaborative knowledge-sharing further compound these challenges. Such findings underline the importance of a clear framework for addressing these barriers through targeted policy interventions, enhanced training programs, and fostering an environment conducive to open data sharing and innovation in urban big data initiatives (*Velasquez & Hester, 2013*) among others.

According to the expert survey responses the outcomes clearly indicated that political and governmental challenges are by far the most significant barriers to the successful implementation and development of urban big data initiatives in Iran. With a priority level of 0.675, this category far surpasses the other domains in terms of impact. Key issues under this category include government policies, sanctions, and a lack of international relations within the urban big data context. The prominence of this category suggests that addressing governmental policies and enhancing international cooperation are crucial steps toward mitigating these challenges.

The financial and economic domain is the second most significant category, with a priority level of 0.222. This reflects the considerable challenges related to funding, market dynamics, and economic policies that hinder the growth and adoption of big data technologies in urban settings. Issues such as the lack of market for big data supply and demand, as well as economic and funding obstacles, are particularly noteworthy. The moderate priority of this category underscores the importance of economic reforms and financial incentives to support big data initiatives.

Educational challenges form the third most significant group, with a priority level of 0.058. This category includes the need for professional training, mentoring, and increased knowledge about the potential benefits of big data in government services. While less critical than political or economic challenges, the educational aspect is still important for ensuring that the workforce is adequately prepared to manage and utilize big data effectively.

Finally, the social and cultural domain ranks as the least significant category, with a priority level of 0.044. This reflects the challenges related to societal attitudes toward technology and the organizational culture within the country. Although this category has the lowest impact, we believe that addressing social and cultural attitudes remains essential for fostering a supportive environment for big data initiatives in the long term.

CONCLUSIONS

Our analysis revealed that political and governmental challenges, such as policy gaps, legal barriers, and limited international cooperation, play a dominant role in the obstacles to the development of urban big data in Iran. These issues, prioritized through the AHP model, highlighted the urgent need for reforms to establish a supportive regulatory environment and foster data-driven innovation (*Davarazar & Lotfollahi, 2020*). Alongside these political barriers, financial challenges, including insufficient funding mechanisms and a lack of market incentives, further exacerbate

the barriers to progress. Addressing these economic issues is vital to ensure the sustainability and scalability of big data initiatives (Selmi et al., 2016).

According to our analytical outcomes educational and cultural challenges are equally important, such as the lack of professional training programs, insufficient knowledge about big data applications, and resistance to technology adoption. These obstacles underscore the need for capacity-building efforts to bridge skill gaps and promote a culture of collaboration and knowledge-sharing among stakeholders. Strengthening education and fostering public-private partnerships could create a foundation for innovation and enhance the integration of big data technologies into urban planning and management (Davarazar & Lotfollahi, 2020).

By tackling these interconnected challenges through targeted policy interventions, strategic investments, and capacity-building programs, Iran can pave the way for a more effective and innovative urban big data ecosystem. This approach will address immediate barriers and lay the groundwork for sustainable urban development, empowering cities to leverage big data for smarter decision-making and improved quality of life.

REFERENCES

Abella, A., Ortiz-de-Urbina-Criado, M., & De-Pablos-Heredero, C. (2017). A model for the analysis of data-driven innovation and value generation in smart cities' ecosystems. *Cities*, 64, 47–53. <https://doi.org/10.1016/j.cities.2017.01.011>

Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. *Journal of Urban Technology*, 22(1), 3–21. <https://doi.org/10.1080/10630732.2014.942092>

Alkin, M., & Christie, C. (2004). An Evaluation Theory Tree. In Alkin M. (Ed.), *Evaluation Roots* (pp. 13–65). SAGE Publications. <https://doi.org/10.4135/9781412984157.n2>

Bahrami, M., Abdolvand, N., & Rajae Harandi, S. (2020). Developing a Solution for Intelligent Urban Transportation Management Using the Internet of Things. *Scientia Iranica*, 28(2), 709–720. <https://doi.org/10.24200/sci.2020.51688.2316>

Bibri, S. E. (2019). *Big Data Science and Analytics for Smart Sustainable Urbanism: Unprecedented Paradigmatic Shifts and Practical Advancements*. Springer International Publishing. <https://doi.org/10.1007/978-3-030-17312-8>

Bolici, R., & Mora, L. (2015). Urban Regeneration in the Digital Era: How to Develop Smart City Strategies in Large European Cities. *TECHNE - Journal of Technology for Architecture and Environment*, (10), 110–119. <https://doi.org/10.13128/Techne-17507>

Boyd, D. & Crawford, K. (2012). Critical Questions for Big Data: Provocations for a Cultural, Technological, and Scholarly Phenomenon. *Information, Communication & Society*, 15(5), 662–679. <https://doi.org/10.1080/1369118X.2012.678878>

Cardullo, P., & Kitchin, R. (2018). Being a 'citizen' in the smart city: up and down the scaffold of smart citizen participation in Dublin, Ireland. *GeoJournal*, 84(1), 1–13. <https://doi.org/10.1007/s10708-018-9845-8>

Creswell, J. W. (2014). *Research Design: Qualitative, Quantitative, and Mixed Methods Approach* (4th ed). SAGE Publications.

Davarazar, P. & Lotfollahi, F. (2020). A Scientometric Study on the Analytical Hierarchy Process with Emphasis on Urban Affairs Management. *Journal of Settlements and Spatial Planning*, SI(6), 97–112. <https://doi.org/10.24193/JSSPSI.2020.6.10>

Davenport, T. H. (2014). *Big Data at Work: Dispelling the Myths, Uncovering the Opportunities*. Harvard Business Review Press.

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics. *AIP Conference Proceedings*, 1644(1), 97–104. <https://doi.org/10.1063/1.4907823>

European Union Agency for Fundamental Rights (2018). *Big Data, Discrimination and Fundamental Rights*. Publications Office of the European Union. <https://fra.europa.eu/en/publication/2018/big-data-discrimination>

European Commission (2020). *A European Strategy for Data*. EC. <https://digital-strategy.ec.europa.eu/en/policies/strategy-data>

Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. *Journal of Cleaner Production*, 98, 66–83. <https://doi.org/10.1016/j.jclepro.2013.06.046>

Han, W., Luan, H., & Liu, C. (2018). Assessment of Bolt Reinforcement Effect Based on Analytic Hierarchy Process. *Geotechnical and Geological Engineering*, 37, 803–812. <https://doi.org/10.1007/s10706-018-0650-4>

Lim, C., Kim, K.-J., & Maglio, P. P. (2018). Smart cities with big data: Reference models, challenges, and considerations. *Cities*, 82, 86–99. <https://doi.org/10.1016/j.cities.2018.04.011>

Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, Adoption Barriers and Myths of Open Data and Open Government. *Information Systems Management*, 29(4), 258–268. <https://doi.org/10.1080/10580530.2012.716740>

Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. *Journal of Business Research*, 70, 338–345. <https://doi.org/10.1016/j.jbusres.2016.08.007>

Jiang, H., Geertman, S., & Witte, P. (2020). A Sociotechnical Framework for Smart Urban Governance. *International Journal of E-Planning Research*, 9(1), 1–19. <https://doi.org/10.4018/ijepr.2020010101>

Katzman, K. (2020). *Iran Sanctions*. Congressional Research Service. <https://nsarchive.gwu.edu/document/27084-document-230-congressional-research-service-kenneth-katzman-iran-sanctions-november>

Keyvanpour, M. R., & Moradi, S. S. (2014). A Perturbation Method Based on Singular Value Decomposition and Feature Selection for Privacy Preserving Data Mining. *International Journal of Data Warehousing and Mining*, 10(1), 55–76. <https://doi.org/10.4018/ijdwm.2014010104>

Kitchin, R. (2014). The real-time city? Big data and smart urbanism. *GeoJournal*, 79(1), 1–14. <https://doi.org/10.1007/s10708-013-9516-8>

Kitchin, Rob (2016). *Getting Smarter about Smart Cities: Improving Data Privacy and Data Security*. Data Protection Unit, Department of the Taoiseach.

Kitchin, R. & Lauriault, T. (2018) Towards critical data studies: Charting and unpacking data assemblages and their work. In Thatcher, J., Eckert, J. & Shears, A. (Eds.), *Thinking Big Data in Geography* (pp. 3–20). University of Nebraska Press.

McAfee, A., & Brynjolfsson, E. (2012). Big Data: The Management Revolution. *Harvard Business Review*, 90(10), 60–68.

Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., & Scorrano F. (2014). Current Trends in Smart City Initiatives: Some Stylised Facts. *Cities*, 38, 25–36. <https://doi.org/10.1016/j.cities.2013.12.010>

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. *Administration and Policy in Mental Health and Mental Health Services Research*, 42(5), 533–544. <https://doi.org/10.1007/s10488-013-0528-y>

Rabari, C., & Storper, M. (2014). The digital skin of cities: urban theory and research in the age of the sensorized and metered city, ubiquitous computing and big data. *Cambridge Journal of Regions, Economy and Society*, 8(1), 27–42. <https://doi.org/10.1093/cjres/rsu021>

Shadroo, S., & Rahmani, A. M. (2018). Systematic survey of big data and data mining in internet of things. *Computer Networks*, 139, 19–47. <https://doi.org/10.1016/j.comnet.2018.04.001>

Razavian, B., Hamed, S. M., Fayyaz, M., Ghasemi, P., Ozkul, S., & Tirkolaee, E. B. (2024). Addressing barriers to big data implementation in sustainable smart cities: Improved zero-sum grey game and grey best-worst method. *Journal of Innovation & Knowledge*, 9(4), 100593. <https://doi.org/10.1016/j.jik.2024.100593>

Selmi, M., Kormi, T., & Bel Hadj Ali, N. (2016). Comparison of multi-criteria decision methods through a ranking stability index. *International Journal of Operational Research*, 27(1/2), 165–183. <https://doi.org/10.1504/IJOR.2016.078462>

Supreme Council of Cyberspace (Iran) (2018). *Strategic Plan for Development of Smart Cities in Iran*. Tehran: SCC.

Thakuriah, P., Tilahun, N. & Zellner M. L. (Eds.) (2017) *Seeing Cities Through Big Data*. Springer Geography. Springer International Publishing. <https://doi.org/10.1007/978-3-319-40902-3>

Velasquez, M. & Hester, P. T. (2013) An Analysis of Multi-Criteria Decision-Making Methods. *International Journal of Operations Research*, 10(2), 56–66.

World Bank (2017). *Digital Dividends – World Development Report 2016*. <https://www.worldbank.org/en/publication/wdr2016>

Corresponding author:

Mahla SHOJAE ANARI
Eötvös Loránd University
1053 Budapest, Egyetem tér 1-3., Hungary
e-mail: mahlashojaee71@gmail.com

© Copyright 2025 by the authors.

This is an open access article under the terms and conditions of the Creative Commons attribution (CC-BY-NC-ND) license 4.0.

