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ABSTRACT 

Demand forecasting is an essential task to match supply and demand. From a supplier’s view, demand 
forecasting is important to optimize supply chains and thus maximize profits. The ever-increasing 
availability of data that can be used as input factors for predictive models allows more and more 
sophistication for diverse forecasting tasks in the context of demand forecasting. On the one hand, 
increasingly complex models have been used for demand forecasting over the last years, from simple 
exponential smoothing methods and ARIMA models up to complex, hybrid (deep) artificial neural 
networks. On the other hand, little attention is paid to the methods that evaluate the forecasting 
performance of these models, which are essential for the selection from among potential forecasting models. 
In this article, we aim to answer the question of what are the most favourable measurements in recent 
literature on applied neural network demand forecasting for supply chain management. To this end, we 
analyzed 193 relevant publications in which demand forecasting was applied using artificial neural 
networks. We found that in artificial neural network demand forecasting used to evaluate forecasting 
performance, Mean Absolute Percentage Error, Root Mean Squared Error, Mean Squared Error 
and Mean Absolute Error are by far the most popular methods. Furthermore, we found that when 
forecasting performance measurements are combined, the most common combination is the combination 
of Mean Absolute Error, the Root Mean Squared Error and the Mean Absolute Error. 
Keywords: artificial neural networks, decision support systems, performance 
measurements, supply chain management 

INTRODUCTION 

From a higher level, demand forecasting is an essential task to match supply and 
demand. From a supplier’s view, demand forecasting is key to optimising supply 
chains and thus maximising profits. The planning of the expected demand is the first 
step in putting together a business model and consequently, the basis of all planning 
activities (Haberleitner et al., 2010). The increase in the global competition meant that, 
on the one hand, storage costs were cut while the availability of products improved. 
This requires a high level of forecasting of the expected demand (Lewis, 1997; 
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Carbonneau et al., 2008). In the retail sector, demand forecasting is used to estimate 
which products the seller will provide and in what quantity (e.g. Fildes et al., 2022). If 
the forecast is too low, the customers who cannot be served will change vendors and 
possibly the image will be damaged. If the forecast exceeds demand, the products 
will remain in stock and spoil, or their storage will incur storage costs. In both cases, 
there is financial damage. After all, in the retail sector, a time gap between supply and 
demand can be compensated for by proper warehousing. This is not the case in other 
sectors. In the case of electricity, an existing demand must be covered by an offer 
from the energy supplier. It goes without saying that the potential damage from large-
scale power blackouts is significant (Suganthi & Samuel, 2012; Ghalehkhondabi et al., 2017).  
In the tourism sector, a good demand forecast is also essential. Based on the 
expectations in the sector of tourism, logistics capacities in the form of flights, hotel 
capacities, but also capacities for staff and food are provided in advance. If the 
forecast is above the demand, inefficiencies arise because these capacities are not 
called up and cause financial damage on the one hand, and on the other are not 
available elsewhere. If the forecast is too low and the capacities provided based on it 
is also too low, customers will be dissatisfied because the quantity or quality of service 
is insufficient. This causes substantial damage to the respective holiday region (Burger 
et al., 2001; Andrawis et al., 2011). These three examples show that an accurate forecast 
of the demand is very important. The ever-increasing availability of data that can be 
used as input factors for prediction allows more sophisticated models to be 
constructed and operated in practice. This means that increasingly complex models 
have been used for demand forecasting over the past ten years, from simple 
exponential smoothing methods, and ARIMA models to complex hybrid (deep) 
artificial neural networks (Schmidhuber, 2015). Forecasters must always ask themselves 
which forecasting model is the best for their respective area of application. This raises 
the question of how the accuracy of a forecasting model is measurement and how 
different forecasting models can be compared. Forecasting performance 
measurements or forecasting accuracy measurements quantify the accuracy of 
forecasts. Dealing with these methods and selecting the appropriate forecasting 
performance measurement for the respective application is very important, as it has 
a direct influence on the choice of the forecasting model and consequently, on the 
result that is to be achieved with forecasting (Makridakis, 1993). Given the 
importance of forecasting performance measurements, this article aims to answer the 
question of which are the most favored forecasting performance measurements are 
in the recent literature on artificial neural network demand forecasting. For this 
purpose, we conducted an analysis of relevant research in which demand forecasting 
was carried out using artificial neural network methods. In this article, we want to 
answer the following research questions. 

Research question 1: What are the most frequent forecasting performance 
measurements used for applied artificial neural network demand forecasting? 

Research question 2: What are the most frequent combinations of forecasting 
performance measurements? 

We performed a Google Scholar search and analyzed 193 papers in the context of 
applied artificial neural network demand forecasting in detail for their used methods, 
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their area of application and their forecasting performance criteria. With this 
dedicated study, we can provide a complete overview of the forecasting performance 
measurements used in demand forecasting over the last ten years. As far as we know, 
there is no systematic treatment of the forecasting performance measurements used 
in the field of demand forecasting using methods of artificial intelligence. We want 
to help the users of forecasting methods to critically deal with the properties of the 
forecasting performance measurements and use them consciously and specifically in 
the context of a given forecasting framework. We explain the advantages and 
disadvantages of the most frequently used forecasting performance measurements 
and which alternative methods are the more suitable. Our article is organized as 
follows. We provide an overview of the most important research on demand 
forecasting using artificial neural networks and forecasting performance measuring. 
Then we describe the methodology we used to conduct our systematic literature 
review. We then discuss the results in detail. Finally, we summarize the most 
important findings and give an outlook on possible further research. 

THEORETICAL BACKGROUND 

The literature, including Armstrong (2001) and Thonemann (2010), distinguishes 
between three basic approaches to predicting customer demand: qualitative forecasts, 
causal forecasts, and time series forecasts. In this paper, we focus on research using 
time series demand forecasting. Time Series Forecasting is based on historical data 
using time series analysis methods. A connection between the past and the future of 
a variable is assumed. Applied to the prediction of customer demand, this approach 
draws a conclusion on future demand based on historical demand. The methods for 
forecasting time series and their fields of application are quite numerous. A good 
overview can be found in De Gooijer & Hyndman (2006). We first provide a brief 
overview of forecasting time series using artificial neural networks and then briefly 
review the literature related to forecasting performance measurements. 

Artificial Neural Networks for Demand Forecasting 

Artificial Neural Networks (ANNs) have become a very popular approach for 
modelling and predicting time series. ANNs are based on the idea that by networking 
many individual calculations, the functioning of the human brain can be simulated 
and thus the ability to solve a variety of (non-linear) problems is created. The versatile 
applicability is exactly the reason why ANNs became so popular. McCulloch & Pitts 
(1943) were the first to model the artificial neuron. Combinations of these neurons 
then form an artificial neural network. With the perceptron, which consists of a single 
artificial neuron with adjustable weights and a threshold value, Rosenblatt (1958) 
published the simplest form of an artificial neural network. The building blocks of 
an ANN are the artificial neurons, which are arranged in different layers. From the 
input layer, information enters the network in the hidden layers, which process the 
information, and finally in the output layer, which gives the information out. Since 
the first neural networks, research on artificial neural networks has progressed 
steadily and has been applied to a wide range of problems. A good overview of the 
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development of ANNs can be found in Schmidhuber (2015) and Goodfellow et al. (2018). 
The neural networks can be roughly divided into the following categories: shallow 
neural networks (e.g. Aggarwal, 2018), multilayer perceptrons, also called deep neural 
networks (e.g. Schmidhuber, 2015), convolutional neural networks (e.g. Gu et al., 2018), 
recurrent neural networks (e.g. Salehinejad, 2017), long-short term memory neural 
networks (e.g. Yu et al., 2020), attention based neural networks (e.g. Wang et al., 2016) 
and generative adversarial network (e.g. Creswell et al., 2018). Numerous applications 
of artificial neural network demand forecasting can be found in the literature. Ryu et 
al. (2016) used deep learning to forecast the short term electricity demand. Constantino 
et al. (2016) forecast tourism demand by ANNs. Wanchoo (2019) proposed a deep 
learning model to forecast retail demand. Babai (2014) used an ANN to forecast 
intermittent demand. Panapakidis & Dagoumas (2017) forecast natural gas demand 
one day in advance using a hybrid artificial neural network. Ke et al. (2017) have 
examined the demand for on-demand ride services, and Kilimci et al. (2019) used a 
deep learning model to forecast demand in a supply chain framework. 

Forecasting Performance Measuring 

As there are a lot of different approaches to forecast demand, from the point of view 
of a decision-maker, the question now arises as to which of the different forecasting 
models is to be preferred. To assess this, Granger & Pesaran (2000a) remarked that a 
decision-maker needs one or more criteria to compare the performance of given 
forecast models. Granger & Pesaran (2000a) and Granger & Pesaran (2000b) noted that it 
is crucial for decision-making based on forecasts, that the forecasts are linked to a cost- 
or loss function, which quantifies the forecasting error in terms of the specific 
forecasting problem. Therefore, a fundamental problem for the decision-maker is the 
selection of a suitable forecasting criterion, to measurement the accuracy of forecasting 
or a loss function which quantifies the forecasting error. Makridakis (1993) wrote that 
from an ex-ante perspective, the decision-maker cannot judge which forecasting model 
is the best model, since a sample of forecasts must be made to assess the forecasting 
performance using a forecasting performance measurement. This means that the 
forecasting performance measurement that best provides information about future 
forecasting performance should be used. From an ex-post situation, an evaluation of 
different forecasting models is possible by forecasting performance measurements. It 
is important to realize that future forecasting performance would be influenced by the 
choice of a forecasting performance measurement. This happens insofar as the 
forecasting performance measurement is used to decide regarding the forecasting 
method used in the future, based on the perceived performance today. This means, 
that when deciding between two forecasting models, one forecasting measurement can 
prefer one model and another measurement can prefer another one, Makridakis (1993) 
remarked. Another dependency is the scope of the forecasting horizon. So, the 
outcome of a forecasting performance measurement can change with different 
forecasting horizons. This shows that a consistent selection of forecasting model is not 
easily possible, as Clements & Hendry (1993) showed this in the example of the mean 
square forecast error (MSE). To overcome this problem, Diebold & López (1996) 
formulated properties that optimal forecasts should possess. The following properties 
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should therefore apply to the forecast errors of an optimal k-step ahead point forecast 
of a linear forecast model: the forecast errors have a zero mean, the 1-step ahead 
forecast errors following a white-noise process, the k-step ahead forecast errors 
following a MA(k-1) moving average process and the k-step ahead forecast error 
variance is not decreasing in k. So, these properties can be tested statistically. Moreover, 
for the ex-post comparison of two forecasts, Diebold & Mariano (2002) showed other 
approaches which test statistical significance whether one forecast has the same 
forecasting accuracy as the other one. However, these methods are not found in many 
application-related articles. Instead, and we will go into this in detail later in the Results, 
methods section, the Mean Average Percentage Error (MAPE), the Mean Square Error 
(MSE) or the Root Mean Square Error (RMSE) are used. Hyndman & Koehler (2006) 
note that the MAPE is often recommended for example by Hanke and Reitsch (1995); 
Bowerman et al. (2003) and Makridakis et al. (1982). There is a wide variety of practical 
applications. Petrucci et al. (2022); Porteiro et al. (2020) and Jnr et al. (2021) used the MAPE 
to benchmark models for the forecasting of electricity demand. The RMSE was used 
by e.g. Zhang et al. (2020); Anisa et al. (2021) and Liang (2022) to compare forecasts of 
tourism demand. Slimani et al. (2015); Chawla et al. (2019); Herrera-Granda et al. (2019) 
and Maragkos (2020) made their retail forecasting model selection by the MSE. 

METHODOLOGY 

Our research was conducted as a systematic literature review, which entails a 
thorough, transparent, and replicable process for literature search and analysis. This 
choice of method is suitable as the research questions require a quantitative overview 
of existing usage of methods and areas of application for demand forecasting. We 
made our search in Google Scholar (http://scholar.google.com). We decided to use 
We chose Google Scholar for the literature research because it provides a simple 
search, finds many sources, lists documents soon after they are published and has a 
good relevance ranking. The search for ’Forecasting‘ and ’Demand‘ and ’Neural 
Network‘ which are in the title of the paper was conducted from the 28th of January 
2023 to the 14th of February 2023. To examine the current literature, we restricted 
the search to research between 2013 and 2022. With these search strings, the total 
number of hits was 281 publications. All hits were collated in an Excel spreadsheet 
as a record of the search. We then carried out a filter with regard to the type of 
publication, language, quality and accessibility of the publications we found. 
Furthermore, we only used publications that shed light on a practical forecasting 
problem in the supply chain context. This procedure is presented in Figure 1. In total, 
from 281 hits, we excluded 88 hits because they were just citations (34 hits), we had 
no access to the publication (28 hits), the publication was not written in the English 
language (10 hits), there was no explanation about the usage of a forecasting 
performance measurement (8 hits), the publication was listed twice (5 hits) or the 
publication was bad quality (3 hits). To be able to make our evaluations, we recorded 
the following details of the publication: reference, date, number of citations, the field 
of application of demand forecasting, forecasting method, back propagation 
algorithm and forecasting accuracy measurement. For the evaluation of the used 
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forecasting performance measurements, we analyzed the publications in our database 
and collected the forecasting performance measurements that were used in the 
research in a database. We recorded all the procedures mentioned in the publication, 
and we also allowed multiple entries. Then we calculated the absolute and relative 
frequencies across all recorded performance measurements. An overview of the 
various forecasting performance measurements can be found in articles by Chen & 
Yang (2004) and Koutsandreas et al. (2022). 

Figure 1: Methodology of literature collection 

 

RESULTS 

Using a systematic literature review, we investigated the forecasting performance 
measurements for demand forecasting based on neural network in supply chain 
frameworks. We found that by far the most frequently used measurements are 
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MAPE, RMSE, MSE and MAE. Although these metrics have well-known 
weaknesses, they are widely used in relevant research. Different measurements are 
often used in combination with research. We have analyzed which combinations of 
forecasting performance measurements are used and found that the combination of 
MAPE, RMSE and MAE are used most frequently. In the following, we discuss these 
two results in detail. 

Most favourite forecasting performance measurements for neural network 
demand forecasting 

We analyzed a total of 193 publications and collected 343 database entries of 
forecasting performance measurements. We collected all measurements which were 
used. Overall, we collected 29 different forecasting performance measurements 
(Table 1). However, as we will discuss it later, only a small number of these 
measurements have been widely used. 

Table 1: Overview of all collected different forecasting performance 
measurements 

Absolute Forecast Error (AFE) Average Relative Mean 
Absolute Error 

Coefficient of Determination 
(R^2) 

Correlation Coefficient Diebold-Mariano Test (DM-
Test) 

Mean Absolute Deviation 
(MAD) 

Mean Absolute Error (MAE) Mean Absolute Percentage 
Error (MAPE) 

Mean Absolute Relative Error 

Mean Absolute Relative 
Normalized Error (MARNE) 

Mean Absolute Scaled Error 
(MASE) 

Mean Negative Error (MNE) 

Mean Percentage Error (MPE) Mean Positive Error (MPE) Mean Squared Error (MSE) 

Nash-Sutcliff-Index Normalized Mean Absolute 
Error (NMAE) 

Normalized Mean Squared 
Error (NMSE) 

Normalized Root Mean Squared 
Error (NRMSE) 

Pearson Product-Moment 
Correlation Coefficient 
(PPMCC) 

Percentage Forecast Error 
(PFE) 

Relative Mean Absolute 
Percentage Error (RMAPE) 

Relative Root Mean Squared 
Error (RRMSE) 

Root Mean Squared Error 
(RMSE) 

Root Mean Squared Scaled 
Error (RMSSE) 

Simple Forecast Error Sum of Squared Errors (SSE) 

Symmetric Mean Absolute 
Percentage Error (SMAPE) 

Wilcoxon-Signed-Ranks Test  

 
On average, every research paper used 1.78 different forecasting performance 

measurements. This is particularly useful when measurements with different 
properties are combined and thus allowing the evaluation of a forecasting model 
under various aspects. Figure 2 presents the most popular forecasting performance 
measurements in the collected sample, which were found more than once. It can be 
seen that four measurements are particularly common. With a total count of 92 
(26.8% of overall 343 recorded forecasting performance measurements), we can 
observe that the Mean Average Percentage Error (MAPE) is the most preferred 
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measurement. This is probably the case because the MAPE is scale independent and 
it is easy to interpret and compute, which makes it very popular among practitioners 
(e.g. Byrne, 2012). A significant disadvantage is that only data without zero and 
extreme values are necessary for the MAPE. If the true value is extremely small or 
large, MAPE value takes on an extreme value (Kim & Kim, 2016). In practice, many 
datasets contain zeros in the realized values, e.g., in retail, when no transaction takes 
place. To obtain a usable MAPE value, these observations would have to be removed 
as outliers from the sample used to calculate the MAPE. A specific suggestion was 
made by Makridakis (1993) who proposed to exclude values with actual values less 
than one or with an average percentage error values greater than the MAPE plus 
three standard deviations. However, since these are normal observations, the sample 
is distorted, and comparison is made more difficult. Another method Makridakis 
(1993) suggests is the replacement if the MAPE by the Symmetric Mean Absolute 
Percentage Error (SMAPE). In our analysis, however, the SMAPE was only used 4 
times (1.2%). Hyndman & Koehler (2006) also recommended dispensing with the 
MAPE and using the Mean Absolute Scaled Error (MASE) instead. 

Figure 2: Favourite performance measurements of demand forecasting 

 
Sample size = 343 collected forecast performance measurements 

 
However, the MASE was only used 4 times (1.2%) in the research papers we 

analyzed. In general, Swanson et al. (1999) have noted that measurements based on 
percentage errors, like the MAPE, are often highly skewed, and therefore 
transformations such as logarithms can make them more stable. Clements et al. (2004) 
discusses this in more detail.  We did not find a measurement based on log 
transformation in our analysis. The second most common measurement is the Root 
Mean Square Error (RMSE) with a total count of 80 (23.3%). As mentioned above, the 
RMSE is defined as the root of the Mean Square Error (MSE), which is also a very 
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common measurement. Due to the square root function, the RMSE is in the same unit 
as the forecast and true values and is, therefore, easier to interpret than the MSE. Its 
popularity in our research is also consistent with former research, such as Carbone and 
Armstrong (1982) who found that RMSE is preferred by practitioners. On the other 
hand, Armstrong and Collopy (1992) found that the RMSE is not reliable in terms of the 
repeated application of a method that produces the same results. By using the 
Spearman rank-order correlation, they showed that the RMSE is not consistent in 
producing accurate rankings of out-of-sample forecasts of different time series 
extrapolation methods and performed worse than for example the MAPE. Willmott & 
Matsuura (2005) found that the RMSE approaches the mean average error for a small 
number of observations and increases as the number of observations increases. They, 
therefore, recommend that the measurement is not adequate for average model 
performance and do not suggest the use of it. In opposition to this, Chai & Draxler 
(2014) mentioned that RMSE is appropriate for Gaussian distributed errors resulting 
from the forecast models. Another measurement that is also used very frequently is the 
Mean Squared Error (MSE). We found that it was used 51 times in total and a share of 
14.9%. The MSE is for a long time the dominant performance metric in the field of 
signal processing (Wang & Bovik, 2009). A major reason for this is probably the simple 
calculation, but also its properties of a valid distance metric, its physical interpretability 
and its excellent properties in optimization contexts. Besides, the MSE is widely used 
and it is therefore an established practice to compare forecasting model performance 
(e.g. Wang & Bovik, 2009). Because of the quadratic term, large errors are weighted 
more than small ones. The MSE is more difficult to interpret in different contexts 
because it is no longer in the original units of measurementment of the observed values 
due to the quadratic expression. The Mean Absolute Error (MAE) is the fourth most 
common forecasting performance measurement because the error value units match 
the predicted target value units. In the research articles we reviewed, the MAE was used 
a total of 46 times, with a share of 13.4%. The changes of the MAE are linear and 
therefore intuitive, unlike RMSE or MAPE. Since the error values are measurementd 
in the original units, the MAE is not suitable for evaluating forecasts from different 
units. Moreover, the errors are not weighted differently, but are treated equally. For 
example, MSE and RMSE penalize larger errors more. (Schneider & Xhafa, 2022). When 
measuring an average model accuracy Chai & Draxler (2014); Willmott et al., (2009) and 
Willmott & Matsuura (2005) showed that MAE outperforms RMSE in most situations, 
especially at Laplace distributed forecast errors, but worse in Gaussian noisy scenarios 
(e.g. Qi et al., 2020). As we observed, these four performance measurements account 
for more than 78% of the total measurements collected. According to the research 
articles we analyzed, this is mainly due to the following. First, these measurements have 
been in use for a long time and have therefore been widely used in the relevant research. 
This is likely to improve the comparability of research on forecasting. Second, they’re 
easy to interpret as they use the same scaling as the analyzed time series, except for the 
mean square error. However, we have also seen that there is widespread criticism for 
the usage of scale-dependent measurements (e.g.: MAE, RMSE), measurements based 
on percentage errors (e.g.: MAPE) and measurements based on relative errors 
(MRAE). A good overview of this criticism is provided by Hyndman and Koehler (2006). 
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In addition, according to Hodson (2022) the use of RMSE and MAE can be appropriate 
when the measurements are chosen as a function of forecast errors – RMSE is 
appropriate for Gaussian errors and MAE for Laplace errors. Although less frequently, 
the coefficient of determination (R^2) with a total count of 14 (4.1%), the Percentage 
Forecast Error (PFE) with a total count of 9 (2.6%), the Simple Forecast Error with a 
total count of 7 (2.0%), the Normalized Root Mean Squared Error (NRMSE) with a 
total count of 6 (1.7%), the Mean Absolute Scaled Error (MASE) with a total count of 
4 (1.2%), the Symmetric Mean Absolute Percentage Error (SMAPE) with a total count 
of 4 (1.2%), the Mean Percentage Error (MPE) with a total count of 4 (1.2%), the Mean 
Absolute Deviation (MAD) with a total count of 4 (1.2%), the Relative Mean Absolute 
Percentage Error (RMAPE) with a total count of 3 (0.9%), the Absolute Forecast Error 
with a total count of 2 (0.6%) were also used. Of the 29 discussed measurements, 15 
account for a total of 95.6% of all observations. 

Favorite combinations of forecasting performance measurements 

In our research, we found that often more than one forecasting performance 
measurement was used. To examine which combinations of forecasting performance 
measurements were most frequently used, we analyzed 102 publications (52.8% of 
the complete sample of 193 publications) that used more than one single forecast 
measurement. Of these, a total of 54 publications (28.0%) used two forecasting 
measurements and 48 (24.9%) publications used three or more forecasting 
measurements. Each combination of forecast performance measurements (e.g. 
MAPE & MSE) comes from a specific publication of our database. For the analysis 
of clusters, we recorded all combinations (i.e. MAPE & MSE) that occurred more 
than once. Overall, we found 56 (54.9% of the total 102) combinations of forecasting 
performance measurements that occurred more than once. 46 (45.1% of overall 102) 
combinations were unique and were not shown separately. The results are shown in 
Figure 3. In 16 cases (28.6% of the total 56 recorded combinations), the most popular 
combination of forecasting performance measurements is the combination of the 
three measurements of MAPE & RMSE & MAE. measurement. The second most 
common combination with a frequency of 14 (25.0% of the total 56 recorded 
combinations) was the combination of MAPE & RMSE. This is followed by the 
combination of MAPE & MSE, with a frequency of 7 (12.5% of the total 56 recorded 
combinations), and the combination of RMSE & MAE with a frequency of 7 (12.5% 
of the total 56 recorded combinations), next, the combination of MAPE & MAE 
with a frequency of 4 (7.1% of the total 56 recorded combinations), then, the 
combination of RMSE & MSE with a frequency of 3 (5.4% of the total 56 recorded 
combinations), finally, the combination of MSE and R^2 with a frequency of 3 (5.4% 
of the total 56 recorded combinations) and the combination of MAE & MSE with 
one Frequency of 2 (3.6% of the total 56 recorded combinations). This result shows 
that the most popular combinations include the most popular measurements of 
MAPE, RMSE, and MAE. In general, when choosing the best forecasting model, the 
use of multiple forecasting performance measurements should be challenged from a 
decision-theoretical point of view. If a single measurement is used, the forecasting 
model that generates the smaller forecasting loss should be selected. When two 
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measurements are combined, they should prefer the same forecasting model in order 
to choose a clear forecasting model. In this case, one of the forecasting performance 
measurements is redundant. If different forecasting model is preferred, it is difficult 
to choose. A first limitation of combinations with MAPE is the fact that MAPE 
produces extreme values with small input values (differences between forecast and 
true value). As explained above, this means that the choice regarding the best 
forecasting model cannot be made or that MAPE is no longer used as a criterion. An 
adjustment of small differences between forecast and true value must then also be 
made for the comparison models – but these can take completely different values, 
which means that the sample is distorted. The combination of MAPE and RMSE is 
complementary in that the MAPE quantifies the forecasting performance as a 
percentage and the RMSE quantifies it in the unit of the original time series. As we 
pointed out above, MAE is better for Laplace distributed errors, and RMSE is better 
for Gaussian distributed errors. Therefore, the combination of these two 
measurements makes little sense. Instead, one of the two measurements should be 
chosen based on the existing errors, again in the interests of better choice. 

Figure 3: Favorite combinations of forecasting performance measurements 

Sample size = 56.  

DISCUSSION AND FURTHER RESEARCH 

In our evaluation, we found that the Mean Absolute Percentage Error (MAPE), the 
Relative Mean Squared Error (RMSE), the Mean Squared Error (MSE) and the Mean 
Absolute Error (MAE) are the most frequently used performance criteria. These 
measurements dominate the literature for applied artificial neural network demand 
forecasting in supply chain contexts. This is because they are easy to compute and 
most of them are easy to interpret. They were also widely used in the past, therefore, 
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more recent research uses them as a guide. Because of their widespread use, it seems 
to be easy for researchers to compare their results with other research, other models 
and applications. However, there have been several criticisms of the measurements 
in the literature concerning measurement their consistency, their behaviour with 
outliers and their comparability. As the decision between different forecasting 
models, based on these forecasting measurements, depends on sample size of the 
dataset and the forecasting horizon, decision-making is not consistent. Although 
alternatives (e.g. SMAPE and MASE) with better characteristics are proposed in the 
literature to choose between different forecasting methods and overcome the 
weaknesses of the commonly used measurements, we found only a few examples of 
this Likewise, in our analysis, we found hardly any individual loss functions specific 
to an application that quantifies the economic effects of incorrect forecasts. That 
means that over-forecasting is just as problematic as under-forecasting. The use of 
symmetric performance criteria (like MAPE or RMSE) makes sense in a theoretical 
context and in the comparison of forecasting models. However, as explained above, 
this is not appropriate for the forecast of electricity demand. In principle, the choice 
of the forecast performance measurement should also consider the forecasting 
framework measurement. It follows that the choice of the forecasting model can still 
be optimized and so can the forecasting results, since the loss function has not been 
adapted to the forecasting problem. The most common combinations of forecasting 
performance measurements are MAPE & RMSE & MAE. This is the combination 
of the most widely used forecasting performance measurements. A combination of 
forecasting performance measurements only makes sense if the two measurements 
complement each other in terms of their properties.  Finally, from the perspective of 
the decision maker, the question is which forecasting model should be preferred if 
the combined use of performance measurements results in different 
recommendations. So, the recommendation is that we should use only one “efficient” 
measurement. Our results detail variability in the use of forecasting performance 
measurements in the research of applied demand forecasting with artificial neural 
networks, and thus generate new insights. In our analysis of demand forecasting 
applications, we did not find any application for the forecast of the demand of 
financial services, although this is a huge industry. The application to generate 
optimization potential in this area seems worthwhile and would fill a research gap. 
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