A szárny dimorfizmus/polimorfizmus a poloskáknál (Heteroptera) funkcionális nézőpontból: áttekintés.

Első rész: nem fitofág fajok

Szerzők

  • Gidó Zsolt Magyar Agrár- és Élettudományi Egyetem

DOI:

https://doi.org/10.33038/jcegi.4491

Kulcsszavak:

szárny dimorfizmus/polimorfizmus, Heteroptera, Gerroidea, vándorlási polimorfizmus, vándorlási szindróma

Absztrakt

Ezen áttekintő közlemény a nem fitofág poloskák (Heteroptera) szárny dimorfizmusát/polimorfizmusát funkcionális nézőpontból összegzi és elemzi a szakirodalom alapján. Ez gyakorlatilag a Gerroidea főcsalád szárny dimorfizmusának/polimorfizmusának tárgyalását jelenti, mivel szinte semmit nem közöltek az egyéb, nem fitofág poloskacsoportok szárny dimorfizmusáról/polimorfizmusáról. A közlemény az évszakos és az egyidejű szárny dimorfizmust/polimorfizmust elkülönítve kezeli és tárgyalja. Ismerteti a szárnyforma öröklődését és fenotipikus plaszticitását, beleértve a különböző módosító környezeti tényezők hatását.A nem-makropterformaszaporodási előnye jól dokumentált a Gerroidea főcsaládba tartozó poloskák nőstényeinél; jóval kevesebb adat áll rendelkezésre a makropter és nem- makropter hímek reproduktív teljesítményéről. A fényperiódus által vezérelt és a hőmérséklet által befolyásolt évszakos szárny dimorfizmus/polimorfizmus általában megfelelő alkamazkodást mutat az aktuális környezeti feltételekhez. A populációsűrűség illetve a táplálék mennyiségének és minőségének a hatása a dimorph/polimorf Gerroideák szárnyformájára még nem tekinthető megfelelően tisztázottnak. Vitatható, hogy a természetes Gerroidea populációkban tapasztalhatómakropter/nem makropter arányok mennyiben tekinthetőek az aktuális élőhely időbeli stabilitására adott adaptív válasznak. A szárny dimorfizmus/polimorfizmus a vándorlási polimorfizmus tágabb összefüggésében értelmezendő, amely olyan jelenségeket is magábafoglal mint a szárnyizom-polimorfizmus illetve a vándorlási hajlam.

Információk a szerzőről

  • Gidó Zsolt, Magyar Agrár- és Élettudományi Egyetem

    assistant professor
    gido.zsolt@uni-mate.hu

Hivatkozások

AHLROTH, P. – ATALO, R.V. HYVÄRINEN, E. ̶ SUHONEN, J. (1999): Geographical variation in wing polymorphism of the waterstrider Aquarius najas (Heteroptera, Gerridae). Journal of Evolutionary Biology, 12, 156–160. DOI: https://doi.org/10.1046/j.1420-9101.1999.00022.x

ANDERSEN, N. M. (1973): Seasonal polymorphism and developmental changes in organs of flight and reproduction in bivoltine pondskaters (Hem. Gerridae). Entomologica Scandinavica, 4, 1–20.

ANDERSEN, N. M. (1993). The Evolution of Wing Polymorphism in Water Striders (Gerridae): A Phylogenetic Approach. Oikos. 67, 433–443, DOI: https://doi.org/ 10.2307/3545355

ANDERSEN, N. M. (2000): The evolution of dispersal dimorphism and other life history traits in water striders (Hem. Gerridae). Entomological Science, 3, 187–199.

ARMISÉN, D. – VIALA, S. – CORDEIRO, I. – CRUMIÉRE, A. – HENDAOUI, E. – LE BOUQUIN, A. – DUCHEMIN, W. – SANTOS, E. – TOUBIANA, W. – VARGAS-LOWMAN, A. – FLORIANO, C. – POLHEMUS, D. – WANG, Y-H. – ROWE, L. – MOREIRA, F. – KHILA, A. (2022): Transcriptome-based Phylogeny of the Semi-aquatic Bugs (Hemiptera: Heteroptera: Gerromorpha) Reveals Patterns of Lineage Expansion in a Series of New Adaptive Zones. Molecular Biology and Evolution. 39. https://doi.org/ 10.1093/molbev/msac229

ARNQUIST, G. – JONES, T. – ELGAR, M. (2007). The extraordinary mating system of Zeus bugs (Heteroptera : Veliidae : Phoreticovelia sp.). Australian Journal of Zoology, 55, 131–137. https://doi.org/ 131-137. 10.1071/zo06090

BRAENDLE, C. – DAVIS, G. K. – BRISSON, J. A. – STERN, D. L. (2006): Wing dimorphism in aphids. Heredity, 97, 192–199. https://doi.org/ 10.1038/sj.hdy.6800863

BRISSON, J.A. (2010): Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Philosophical Transactions of the Royal Society B, 365, 605–616. https://doi.org/ 10.1098/rstb.2009.0255

ČERMAKOVÁ, T. – DITRICH, T. (2009): Influence of environmental factors on wing polymorphism of semiaquatic bugs (Heteroptera: Gerromorpha): expectations and exact data (a review). A communication presented at the 21st SIEEC, České Budějovice, June 28 – July 3, 2009. Microsoft Word-0051 Cermakova.doc (researchgate.net)

CIANFERONI, F. – SANTINI, G. (2012): Ecology and life histories of two Alpine-Apenninic species of Velia (Hemiptera: Heteroptera: Veliidae). European Journal of Entomology, 109, 427–434. https://doi.org/ 427–434. 10.14411/eje.2012.055

CUNHA, E.J. – GUTERRES, A.P.M – GODOY, B.S. – JUEN, L. (2020): Wing dimorphism in semiaquatic bugs (Hemiptera, Heteroptera, Gerromorpha) as a tool for monitoring streams altered by oil palm plantation in the Amazon. Ecological Indicators, 117, 106707. https://doi.org/10.1016/j.ecolind.2020.106707

DENNO, R. – PETERSON, M. (2000): Caught Between the Devil and the Deep Blue Sea, Mobile Planthoppers Elude Natural Enemies and Deteriorating Host Plants. American Entomologist. 46, 95–109. https://doi.org/95-109. 10.1093/ae/46.2.95

DITRICH, T. – PAPÁCEK, M. – BROUM, T. (2008): Spatial distribution of semiaquatic bugs (Heteroptera: Gerromorpha) and their wing morphs in a small scale of the Pohořský Potok stream spring area (Novohradské Hory Mts.). Silva Gabreta. 14. 173–178.

DITRICH, T. – PAPÁCEK, M. (2009): Correlated traits for dispersal pattern: Terrestrial movement of the water cricket Velia caprai (Heteroptera: Gerromorpha: Veliidae). European Journal of Entomology. 106. 551–555. https://doi.org/10.14411/eje.2009.069.

EKBLOM, T. (1941): Untersuchungen über den Flügelpolymorphismus bei Gerris asper Fieb.. Notul. Entomol., 21. 49-64.

FAIRBAIRN, D. (1985): Comparative ecology of Gerris remigis (Hemiptera: Gerridae) in two habitats: a paradox of habitat choice. Canadian Journal of Zoology, 63, 2594–2603. https://doi.org/ 10.1139/z85-388

FAIRBAIRN, D. (1986): Does alary dimorphism imply dispersal dimorphism in the waterstrider, Gerris remigis? Ecological Entomology, 11, 355–368. DOI: https://doi.org/10.1111/j.1365-2311.1986.tb00314.x

FAIRBAIRN, D. (1988): Adaptive significance of wing dimorphism in the absence of dispersal: A comparative study of wing morphs in the waterstrider, Gerris remigis. Ecological Entomology, 13, 273–281. https://doi.org/ 10.1111/j.1365-2311.1988.tb00357.x.

FAIRBAIRN, D.J. – BUTLER T.C. (1990): Correlated traits for migration in the Gerridae (Hemiptera, Heteroptera): a field test. Ecological Entomology, 15, 131–142. https://doi.org/10.1111/j.1365-2311.1990.tb00794.x

FAIRBAIRN, D. (1994). Wing dimorphism and the migratory syndrome: Correlated traits for migratory tendency in wing dimorphic insects. Researches on Population Ecology Kyoto, 36, 157–163. https://doi.org/10.1007/BF02514931

FAIRBAIRN, D. – DESRANLEAU, L. (2008): Flight threshold, wing muscle histolysis, and alary polymorphism: correlated traits for dispersal tendency in the Gerridae. Ecological Entomology, 12, 13–24. https://doi.org/10.1111/j.1365-2311.1987.tb00980.x

FAIRBAIRN, D.J. – KING, E. (2009): Why do Californian striders fly? Journal of Evolutionary Biology, 22, 36–49. https://doi.org/10.1111/j.1420-9101.2008.01619.x.

FRIÁS-LASSERRE, D. – GONZÁLEZ, C. R. – VALENZUELA, C. R. – BLANCO DE CARVALHO, D. – OLIVIERA, J. – CANALS, M. – DA ROSA, J. A (2017): Wing Polymorphism and Trypanosoma cruzi infection in Wild, Peridomestic, and Domestic Collections of Mepraia spinolai (Hemiptera: Reduviidae) From Chile. Journal of medical entomology, 54, 1061–1066. https://doi.org/10.1093/jme/tjx061.

FUJISAKI, K. (1989): Wing Form Determination and Sensitivity of Stages to Environmental Factors in the Oriental Chinch Bug, Cavelerius saccharivorus OKAJIMA (Heteroptera: Lygaeidae). Applied Entomology and Zoology, 24, 287–294. https://doi.org/10.1303/aez.24.287

GIDÓ, Z. (2022): Range expansion and invasive capacity of the wing di- and polymorphic insects: a short review. Journal of Central European Green Innovation, 10, 51–62. https://doi.org/10.33038/jcegi.3473

GUDMUNDS, E. – NARAYANAN, S. – LACHIVIER, E. – DUCHEMIN, M. – KHILA, A. – HUSBY, A. (2022): Photoperiod controls wing polyphenism in a water strider independently of insulin receptor signalling. Proceedings of the Royal Society B, 289, 20212764. https://doi.org/10.1098/rspb.2021.2764

GUERRA, P.A. (2011): Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 86, 813–835. https://doi.org/10.1111/j.1469-185X.2010.00172.x

GUTHRIE, D. M. (1959): Polymorphism in the surface water bugs (Hemiptera, Heteroptera: Gerroide). Journal of Animal Ecology, 28, 141–152.

GOODWYN, P. P. – FUJISAKI, K. (2007): Sexual conflicts, loss of flight, and fitness gains in locomotion of polymorphic water striders. Entomologia Experimentalis et Applicata, 124, 249–259. https://doi.org/10.1111/j.1570-7458.2007.00571.x

HAN, C. S. (2020): Density-dependent sex-biased development of macroptery in a water strider. Ecology and Evolution 10, 9514–9521. https://doi.org/10.1002/ece3.6644.

HARADA, T. (1992): The oviposition process in two direct breeding generations in a water strider, Aquarius paludum (Fabricius). Journal of Insect Physiology, 38, 687–692. https://doi.org/10.1016/0022-1910(92)90051-E

HARADA, T. – NISHIMOTO, T. (2007): Feeding conditions modify the photoperiodically induced dispersal of the water strider, Aquarius paludum (Heteroptera: Gerridae). European Journal of Entomology, 104, 33–37. https://doi.org/10.14411/eje.2007.005

HARADA, T. – NITTA, S. – ITO, K. (2005): Photoperiodism changes according to global warming in wing-form determination and diapause induction of a water strider, Aquarius paludum (Heteroptera: Gerridae), Applied Entomology and Zoology, 40, 461–466. https://doi.org/10.1303/aez.2005.461

HARADA, T. – NUMATA, H. (1993): Two critical day lengths for the determination of wing forms and the induction of adult diapause in the water strider, Aquarius paludum. Naturwissenschaften 80: 430–432. https://doi.org/10.1007/BF01168342

HARADA, T. – SPENCE, J. (2000): Nymphal density and life histories of two water striders (Hemiptera, Gerridae). The Canadian Entomologist, 132, 353–363. https://doi.org/10.4039/Ent13233-3

HARADA, T. – TABUCHI, R. ̶ KOURA, J. (1997): Migratory syndrome in the water strider Aquarius paludum (Heteroptera, Gerridae) reared in high versus low nymphal densities. European Journal of Entomology, 94, 445–452.

HARADA, T. – TAKENAKA, S. – MAIHARA, S. – ITO, K. – TAMURA, T. (2011): Changes in life-history traits of the water strider Aquarius paludum in accordance with global warming. Physiological Entomology, 36, 309–316. https://doi.org/10.1111/j.1365-3032.2011.00798.x

HARADA, T. – TANEDA, K. (1989): Seasonal changes in alary dimorphism of a water strider, Gerris paludum insularis (Motschulsky). Journal of Insect Physiology, 35, 919–924. https://doi.org/10.1016/0022-1910(89)90014-0

HARTFELDER, K. – EMLEN, D.J. (2012): Endocrine Control of Insect Polyphenism. In: GILBERT, L. (eds): Insect Endocrinology. Academic Press, 464–522. https://doi.org/10.1016/B978-0-12-384749-2.10011-1

HYUN, H. – HAN, C.S. (2021): Morph-specific life-history correlations in a wing-dimorphic water strider. Journal of Evolutionary Biology, 34, 1340–1346. https://doi.org/10.1111/jeb.13888

INOUE, T. – HARADA, T. (1997): Sensitive stages in the photoperiodic determination of wing forms and reproduction in the water strider, Aquarius paludum (Fabricius). Zoological Science, 14, 21–27. https://doi.org/10.2108/zsj.14.21

JÄRVINEN, O. – VEPSÄLÄINEN, K. (1976): Wing dimorphism as an adaptive strategy in water-striders (Gerris). Hereditas 84, 61–68. https://doi.org/10.1111/j.1601-5223.1976.tb01196.x

JOHNSON, C. G. (1969): Migration and dispersal of insects by flight. Methuen, London, 763 pp.

KAITALA, A. – DINGLE, H. (1992): Spatial and Temporal Variation in Wing Dimorphism of California Populations of the Waterstrider Aquarius remigis (Heteroptera: Gerridae), Annals of the Entomological Society of America, 85, 590–595. https://doi.org/10.1093/aesa/85.5.590

KAITALA, A. – DINGLE, H. (1993): Wing dimorphism, territoriality and mating frequency of the water strider Aquarius remigis (Say). Annales Zoologici Fennici, 30, 163–168.

KAITALA, A. – HULDÉN, L. (1990). Significance of spring migration and flexibility in flight‐muscle histolysis in waterstriders (Heteroptera, Gerridae). Ecological Entomology, 15. https://doi.org/409-418. 10.1111/j.1365-2311.1990.tb00824.x.

KAITALA, V. – KAITALA, A. – GETZ, W. (1989). Evolutionary stable dispersal of a waterstrider in a temporally and spatially heterogeneous environment. Evolutionary Ecology, 3, 283–298. https://doi.org/10.1007/BF02285260.

KISHI, M. – HARADA, T. – SPENCE, J.R. (2003): Adult flight in a water strider exposed to habitat dry down in the larval stages. Naturwissenschaften 89: 552–554 https://doi.org/10.1007/s00114-002-0380-5

KOVAC, D. – KROCKE, M. (2013): Biology of the bamboo-inhabiting semi-aquatic bugs Lathriovelia rickmersi Kovac & Yang and L. capitata Andersen (Insecta, Heteroptera, Veliidae) and habitat specialisation in the Oriental Baptista/Lathriovelia complex. The Raffles Bulletin of Zoology, Supplement 29, 49–70.

LIN, X. – LAVINE, L.C. (2018): Endocrine regulation of a dispersal polymorphism in winged insects: a short review. Current Opinion in Insect Science, 25:20–24. https://doi.org/10.1016/j.cois.2017.11.004

MATALIN, A. V. (2003): Variations in flight ability with sex and age in ground beetles (Coleoptera, Carabidae) of south-western Moldova. Pedobiologia 47, 311–319. http://dx.doi.org/10.1078/0031-4056-00195

MATSUSHIMA, R. – YOKOI, T. (2022): Behavioural patterns that determine the mating rates in a wing dimorphic riffle bug, Microvelia horvathi Lundblad, 1933 (Hemiptera: Heteroptera: Veliidae). Journal of Ethology, 40, 153–158. https://doi.org/10.1007/s10164-022-00744-3.

MONTEITH, G. B. (1969): A remarkable case of alary dimorphism in the Aradidae (Hemiptera) with a generic synonymy and a new species. Journal of Australian Entomological Society, 8, 87–94.

MURAJI, M. – MIURA, T. – NAKASUJI, F. (1989): Phenological studies on the wing dimorphism of a semiaquatic bug, Microvelia douglasi (Heteroptera: Veliidae). Researches on Population Ecology, 31, 129–138. https://doi.org/10.1007/BF02515811

MURAJI, M. ̶ NAKASUJI, F. (1998): Comparative studies on life history traits of three wing dimorphic water bugs, Microvelia spp. Westwood (Heteroptera: Veliidae). Researches on Population Ecology 30, 315–327. https://doi.org/10.1007/BF02513252

NUMMELIN, M. (1997). Wing dimorphism of a waterstrider Limnogonus franciscanus (Stål) (Heteroptera: Gerridae) in a seasonal tropical climate. Entomologica Fennica. 3. https://doi.org/10.33338/ef.83938

PFENNING, B. – POETHKE, H. – HOVESTADT, T. (2007): Dealing with time constraints on development: The effect of food availability. Ecological Entomology. 32, 273 ̶ 278. https://doi.org/10.1111/j.1365-2311.2007.00867.x.

PFENNING, B. – POETHKE, H. (2006): Variability in the life history of the water strider Gerris lacustris (Heteroptera: Gerridae) across small spatial scales. Ecological Entomology, 31, 123–130. https://doi.org/10.1111/j.0307-6946.2006.00763.x.

PFENNING, B. – GERSTNER, S. – POETHKE, H. (2008): Alternative life histories in the water strider Gerris lacustris: Time constraint on wing morph and voltinism. Entomologia Experimentalis et Applicata. 129, 235–242. https://doi.org 10.1111/j.1570-7458.2008.00781.x.

RENAULT, D. (2020): A Review on Dispersal Polymorphism in Wing-Dimorphic, Mono-Morphic, Wingless, and Range-Expanding Insects, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. Insects, 11, 214. https://doi.org/10.3390/insects11040214

ROFF, D.A. (1986): The evolution of wing dimorphism in insects. Evolution 40, 1009–1020. https://doi.org/10.1111/j.1558-5646.1986.tb00568.x

ROFF, D. A. (1994): Why is there so much genetic variation for wing dimorphism? Researches on Population Ecology, 36, 145–150. https://doi.org/10.1007/BF02514929.

ROFF, D. A. – FAIRBAIRN, D. J. (1991): Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Integrative and Comparative Biology, 31, 243–251. https://doi.org/10.1093/icb/31.1.243

SCHUH, R. T. – SLATER, J.A. (1995): True bugs of the World (Hemiptera, Heteroptera). Classification and Natural History. Cornell University Press; Ithaca & London, 337 pp.

SELVANAYAGAM, M. – RAO, T.K.P. (1986): Wing polymorphism in five species of Gerrids from South India (Heteroptera, Gerridae). Journal of Current Bioscience, 3, 61–71.

SMYKAL, V. – PIVARČI, M. – PROVAZNÍK, J. – BAZALOVÁ, O. – JEDLIČKA, P. – LUKŠAN, O. – HORÁK, A. – VANĚČKOVÁ, H. – BENEŠ, V. – FIALA, I. – HANUS, R. – DOLEŽEL, D. (2020): Complex Evolution of Insect Insulin Receptors and Homologous Decoy Receptors, and Functional Significance of Their Multiplicity. Molecular Biology and Evolution, 37,1775–1789. https://doi.org/10.1093/molbev/msaa048.

SOCHA, R. (1993): Pyrrhocoris apterus (Heteroptera): a model species: a review. European Journal of Entomology, 90, 241–286.

SPENCE, J. (1989): The habitat templet and life history strategies of pond skaters (Heteroptera: Gerridae): Reproductive potential, phenology, and wing dimorphism. Canadian Journal of Zoology, 67, 2432–2447. https://doi.org/10.1139/z89-344.

SPENCE, J. – ANDERSON, N. (2003). Biology of Water Striders: Interactions Between Systematics and Ecology. Annual Review of Entomology, 39. 101–128. https://doi.org/10.1146/annurev.en.39.010194.000533.

SUN, X. – WANG, Y. – DONG, Z. – WU, H.Y. – CHEN, P.P. – XIE, Q. (2018): Identifying Differential Gene Expression in Wing Polymorphism of Adult Males of the Largest Water Strider: De novo Transcriptome Assembly for Gigantometra gigas (Hemiptera: Gerridae). Journal of Insect Science, 1–10. https://doi.org/10.1093/jisesa/iey114

VENN, S. (2016): To fly or not to fly: Factors influencing the flight capacity of carabid beetles (Coleoptera: Carabidae). European Journal of Entomology, 113, 587–600. https://doi.org/10.14411/eje.2016.079

VEPSÄLÄINEN, K. (1971): The role of gradually changing daylength in determination of wing length, alary dimorphism and diapause in a Gerris odontogaster (Zett.) population (Gerridae, Heteroptera) in South Finland. Annales Academiae Scientiarum Fennicae (Series A, IV Biologica). 183, 1–25.

VEPSÄLÄINEN, K. (1974a): Determination of wing length and diapause in water-striders (Gerris Fabr., Heteroptera). Hereditas, 77, 163–76. https://doi.org/10.1111/j.1601-5223.1974.tb00929.x

VEPSÄLÄINEN, K. (1974b): The wing lengths, reproductive stages and habitats of Hungarian Gerris Fabr. species (Heteroptera, Gerridae). Suomalainen Tiedeakatemia toimituksia, Sar. A.4: Biologica, 202, 1–18.

VEPSÄLÄINEN, K. (1978): Wing dimorphism and diapause in Gerris: determination and adaptive significance. Evolution of Insect Migration and Diapause, 218–253.

VEPSÄLÄINEN, K.-KRAJEWSKI, S. (1974): The life cycle and alary dimorphism of Gerris lacustris (L.) (Heteroptera, Gerridae) in Poland. Notulae Entomologicae, 54, 85–89.

YOUNG, E.C. (1965): Flight Muscle Polymorphism in British Corixidae: Ecological Observations. Journal of Animal Ecology. 34, 353–390. https://doi.org/10.2307/2655

ZERA, A. J. (1981): Genetic structure of two species of waterstriders (Gerridae: Hemiptera) with differing degrees of winglessness. Evolution, 35, 218–225. https://doi.org/10.1111/j.1558-5646.1981.tb04881.x

ZERA, A.J. (1984): Differences in Survivorship, Development Rate and Fertility between the Longwinged and Wingless Morphs of the Waterstrider, Limnoporus canaliculatus. Evolution, 38, 1023–1032. https://doi.org/10.2307/2408436

ZERA A.J. – DENNO R.F. (1997): Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology, 42, 207–230. https://doi.org/10.1146/annurev.ento.42.1.207

ZERA, A.J. – INNES, D.J. – SAKS, M.E. (1983): Genetic and Environmental Determinants of Wing Polymorphism in the Waterstrider Limnoporus canaliculatus. Evolution 37, 513–522. https://doi.org/10.1111/j.1558-5646.1983.tb05568.x

ZERA, A.J. – TIEBEL, K.C. (1991): Photoperiodic Induction of Wing Morphs in the Waterstrider Limnoporus canaliculatus (Gerridae, Hemiptera). Annals of the Entomological Society of America, 84, 508–516.

ZHANG, C.X. – BRISSON, J.A. – XU, H.J. (2019): Molecular mechanisms of wing polymorphism in insects. Annual Reviews of Entomology, 64, 297–314. https://doi.org/10.1146/annurev-ento-011118-112448

Letöltések

Megjelent

2023-06-14

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

A szárny dimorfizmus/polimorfizmus a poloskáknál (Heteroptera) funkcionális nézőpontból: áttekintés.: Első rész: nem fitofág fajok. (2023). Journal of Central European Green Innovation, 11(1), 39-54. https://doi.org/10.33038/jcegi.4491