Physiological Characteristics of Wheat Cultivars Treated With Soil Bacteria in a Small-plot Experiment
DOI:
https://doi.org/10.33038/jcegi.7333Keywords:
wheat cultivars, soil bacteria, photosynthetic pigments, vegetation indices, yield, grain qualityAbstract
This paper presents the results of small-plot field experiment conducted in 2022, a year of severe drought, with soil bacteria-treated wheat cultivars, during which we examined photosynthetic pigments, average yield, and certain quality parameters using in vivo methods. The soil microbe preparation used is especially recommended for use in warn, drought period, and it is also effective for seed treatment. Its use can be expected to result in better nutrient and water supply, more homogeneous stands, and increased stress tolerance. At the beginning of flowering, the SPAD, EVI, RDVI indices, which indicate chlorophyll content in leaves were significantly higher in three varieties (Mv Nemere, Mv Kondás, Mv Pelsodur), while at the same time, these varieties showed higher photochemical activity (PRI), lower stress sensitivity (SIPI), and lower carotenoid content (CRI). Water content was higher in treated individuals for all varieties. For all 8 varieties, the average yield was approximately 10% higher on the treated plots, Mv Nemere. The nutritional values were only of medium quality, but all quality parameters on the treated plots showed better results. The quality parameters indicated only medium quality, but we obtained better results for all quality parameters on the treated plots. Overall, it can be said that the product can be used effectively even in a drought year, but at the higher dose recommended by the manufacturer.
References
AGAPIOU A. – HADJIMITSIS D. – ALEAKIS D. (2012): Evaluation of broadband and narrowband vegetation indices for the indentification of archaeological crop marks. Remote Sensing 4(12), 3892–3919. https://doi.org/10.3390/rs4123892
ARREGUI L.M. – LASA B. – LAFARGA A. – IRANETA I. – BAROJA E. – QUEMADA M. (2006): Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. European J. of Agronomy 24(2): 140–148 https://doi.org/10.1016/j.eja.2005.05.005
ASD (2007): FieldSpec 3 User’s Manual. ASD Inc., USA.
BÉLTEKI I. (2019): Őszi búza fajtákkal végzett kísérletek a tájnak megfelelő fajták kiválasztására. Doktori (PhD) értekezés. Szent István Egyetem, Gödöllő. https://real-phd.mtak.hu/1582/1/belteki_ildiko_ertekezes_DOI.pdf
CURRAN P.J. – DUNGAN J.L. – GHOLZ D.L. (1990): Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 7: 33–48. https://doi.org/10.1093/treephys/7.1-2-3-4.33
FILELLA I. – SERRANO I. – SERRA J. – PEÑUELAS J. (1995): Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 35, 1400–1405. https://doi.org/10.2135/cropsci1995.0011183X003500050023x
GABRIEL J.L. – ZARCO-TEJADA P.J. – LOPEZ-HERRERA P.J. – PEREZ-MARTÍN E. – ALONSO-AYUSO M. – QUEMADA M. (2017): Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystem Engineering 160: 124–133. https://doi.org/10.1016/j.biosystemseng.2017.06.003
GAMON J.A. – SERRANO L. – SURFUS J.S. (1997): The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112, 492–499. https://doi.org/10.1007/s004420050337
GITELSON A.A. – MERZLYAK M.N. (2004): Non-destructive Assessment of Chlorophyll Carotenoid and Anthocyanin Content in Higher Plant Leaves: Principles and Algorithms. Papers in Natural Resources. 263. http://digitalcommons.unl.edu/natrespapers/263
HOLLÓ S. – PETHES J. – AMBRUS A. (2009): A tartós szerves és műtrágyázás hatása a talaj könnyen oldható foszfortartalmára Kompolton, csernozjom barna erdőtalajon. Tartamkísérletek jelentősége a növénytermesztés fejlesztésében. Jubileumi tudományos konferencia. Martonvásár, 2009. október 15. 227–234.
HUANG J. – WANG X. – LI X. – TIAN H. – PAN Z. (2013): Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. Plos One, 8(8). https://doi.org/10.1371/journal.pone.0070816
JOLÁNKAI M. – SZABÓ M. (2005): Búza. 183-204. p. In: ANTAL J. (Szerk.): Növénytermesztéstan 1. A növénytermesztéstan alapjai, Gabonafélék. Mezőgazda Kiadó, Budapest. 391 p.
KÁDÁR I., HOLLÓ S. (2006): Műtrágyázás és meszezés hatása a 30 éves kompolti OMTK kísérletben. Agrokémia és Talajtan, 55(2), 433–448. https://files.core.ac.uk/download/pdf/227754317.pdf
KAJDI F. (2011): A búza minősége és annak vizsgálata. Agronapló, 2011/05. https://www.agronaplo.hu/agrofokusz/20140205/a-buza-minosege-es-annak-vizsgalata-33105
KAPRINYÁK T. – LÁPOSI R. – BEKŐ L. – TÓTH SZ. (2018): Effects of combined nutrient supply treatments on some physiological parameters of autumn wheat. Acta Agraris Debreceniensis 241–251. https://doi.org/10.34101/actaagrar/150/1720
KÁTAI J. – SÁNDOR ZS. (2011): Alkalmazott talajtan. Az Agrármérnöki MSc. szak tananyagfejlesztése. TÁMOP-4.1.2-08/1/A-2009-0010 projekt.
KIZILGEÇI F. – CEBELI Z. (2024): Proximal canopy sensing of twenty-two bread wheat genotypes for nutritional quality, yield attributes and grain yield under Mediterranean climate. International Journal of Agriculture Environment and Food Sciences, 8(2), 347–358. https://doi.org/10.31015/jaefs.2024.2.10
KUMMERER K. – HELD M. – PIMENTEL D. (2010): Sustainable use of soils and time. Journal of soil and water conservation. 65(2): 141–149. https://doi.org/10.2489/jswc.65.2.141
LÁPOSI R. – BEKŐ L. – KAPRINYÁK T. – MOLJAK S. – TÓTH SZ. (2020): Evaluation of soil bacteria treatments on some physiological parameters of crops by spectral vegetation indices. Ecocyles 6: 134–145. https://doi.org/10.19040/ecocycles.v6i1.167
MAKÁDI M. (2010): Ásványi és szerves adalékanyagok hatása a nyírségi homoktalajok mikrobiológiai tulajdonságaira. Doktori értekezés, Szent István Egyetem, Környezettudományi Doktori Iskola, 157 p.
MAKÁDI M. – TOMÓCSIK A. – OROSZ V. – LENGYEL J. – BIRÓ B. – MÁRTON Á. (2007): Effects of biogas ferment juice and Phylazonit MC soil bacteria product on green biomass of silage maize and biological activity of the soil (in Hungarian). Agrokemia es Talajtan 56: 367–378. https://doi.org/10.1556/agrokem.56.2007.2.12
MERZLYAK M.N. – GITELSON A.A. – CHIVKUNOVA O.B. – RAKITIN V.Y. (1999): Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant. 106: 135–141. https://doi.org/10.1034/j.1399-3054.1999.106119.x
MORAN J.A., MITCHELL A.K., GOODMANSON G., STOCKBURGER K.A. (2000): Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree physiology 20: 1113–1120. https://doi.org/10.1093/treephys/20.16.1113
PEÑUELAS J. – BARET F. – FILELLA I. (1995): Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31(2): 221–230. https://www.researchgate.net/publication/229084513
PEÑUELAS J. – FILELLA I. (1998): Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trend Plant Sci 3: 151–156. https://ui.adsabs.harvard.edu/link_gateway/1998TPS.....3..151P/doi:10.1016/S1360-1385(98)01213-8
PIETRINI F. – IANNELLI M. A. – MASSACCI A. (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell and Environment 25: 1251–1259. https://doi.org/10.1046/j.1365-3040.2002.00917.x
POLLHAMER E-NÉ (1981): A búza és a liszt minősége. Mezőgazdasági Kiadó, Budapest. 199 p.
RAJCAN I. – TOLLENAAR M. (1999): Source:sink ratio and leaf senescene in maize: ll. Nitrogen metabolism during grain filling, Field Crops Research 60(3): 255–265. https://doi.org/10.1016/S0378-4290(98)00143-9
RASPER V.F., PICO M.L. – FULCHER R.G. (1986): Alveography in quality assessment of soft white winter wheat cultivars. Cereal Chemistry, 63, 359–400. https://www.cerealsgrains.org/publications/cc/backissues/1986/Documents/chem63_395.pdf
SANKARAN S. – KHOT L.R. – ESPINOZA C.Z. – JAROLMASJED S. – SATHUVALLI V.R. – VANDEMARK G.J. – MIKLAS P.N. – CARTER A.H. – PUMPHREY M.O. – KNOWLES N.R. – PAVEK M.J. (2015): Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. European Journal of Agronomy 70: 112–123.
SERRANO L. – USTIN S.L. – ROBERTS D.A. – GAMON J.A. – PEÑUELAS J. (2000): Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ., 74, 570–581. http://dx.doi.org/10.1016/S0034-4257(00)00147-4
STAMP S.R.H. – BOONE C.C. (1989): Comparison of nondestructive chlorophyll-sensitive photometer and destructive methods of chlorophyll determination. Proceedings of the Florida State Horticultural Society. 101, 333–335.
SUGÁR E. (2014) Martonvásári búza genotípusok növekedésdinamikájának és termésprodukciójának vizsgálata különböző N-tápelem szinteken. PhD értekezés. Szent István Egyetem, Gödöllő. https://real-phd.mtak.hu/1290/1/SUGAR_ESZTER_PHD_DISZERTACIO_DOI.PDF
SULTANA S.R. – ALI A. – AHMAD A. – MUBEEN M. – ZIA-UL-HAQ M. – AHMAD S. – ERCISLI S. – JAAFAR H.Z.E. (2014): Normalized Difference Vegetation Index as a Tool for Wheat Yield Faisalabad, Pakistan. Hindawi Publishing Corporation The Scientific World Journal, Volume 2014, Article ID 725326, 8 pages, https://onlinelibrary.wiley.com/doi/10.1155/2014/725326
SZILÁGYI G. (2013): A vetésváltás és trágyázás hatása az őszi búza SPAD értékeire csernozjom talajon. Agrártudományi Közlemények, 56, 123–126. ISBN: 1587-1282
TÓTH N. (2011): A környezeti tényezők hatása az árpa és a maláta söripari tulajdonságaira, Doktori értekezés, Szent István Egyetem, Gödöllő. https://szie.hu/file/tti/archivum/Toth_Nikolett_ertekezes.pdf
VERAVERBEKE W.S. – DELCOUR J.A. (2002): Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit Rev Food Sci Nutr. 42(3): 179–208. https://doi.org/10.1080/10408690290825510
ZARCO-TEJADA, P. J. – USTIN, S. L. (2001): Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites. International Geoscience and Remote Sensing Symposium, 2001. IGARSS ’01, Vol. 1. 342–344. https://doi.org/10.1109/IGARSS.2001.976152
ZARCO-TEJADA, P. J. – USTIN S.L. – WHITING M. L. (2005): Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sening Imagery. Agronomy Journal, 97(3): 641–653. https://doi.org/10.2134/agronj2003.0257
Website 1 - https://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=3261&hir=2022._a_tortenelmi_aszaly_eve_%E2%80%93_az_ev_agrometeorologiai_attekintese Download date: 20/08/2025
Website 2 - https://kormany.hu/hirek/aszalykarok-a-mezogazdasagban Download date: 21/08/2025
Website 3 - https://mikro-vital.hu/mv-supary-2/ Download date: 13/08/2025
Website 4 - https://elitmag.com/vetomag/mv-nemere/ Download date: 08/08/2025
Website 5 - https://elitmag.com/vetomag/mv-nador/ Download date: 08/08/2025
Website 6 - https://elitmag.com/vetomag/mv-menrot/ Download date: 08/08/2025
Website 7 - https://elitmag.com/vetomag/mv-krajcar/ Download date: 08/08/2025
Website 8 - https://elitmag.com/vetomag/mv-kolo/ Download date: 08/08/2025
Website 9 - https://elitmag.com/vetomag/mv-felleg/ Download date: 08/08/2025
Website 10 - https://elitmag.com/vetomag/mv-kondas/ Download date: 08/08/2025
Website 11 - https://elitmag.com/vetomag/mv-pelsodur/ Download date: 08/08/2025
Website 12 - https://www.ksh.hu/s/kiadvanyok/fobb-novenykulturak-termeseredmenyei-2022/fobb-novenykulturak-termeseredmenyei-2022.pdf Download date: 20/08/2025
Website 13 - https://agraragazat.hu/hir/tesztanyujthatosag-vizsgalatok/ Download date: 23/12/2024
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Central European Green Innovation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.