Mikroműanyagokhoz társuló mikrobiális közösségek azonosítása a szennyvíztisztítás különböző fázisaiban és a befogadó felszíni vizekben MALDI-TOF MS módszerrel

Szerzők

  • Mothoa Lerato Emelda Magyar Agrár- és Élettudományi Egyetem, Természettudományok Doktori Iskola
  • Prikler Bence Magyar Agrár- és Élettudományi Egyetem, Természettudományok Doktori Iskola
  • Szabó István Magyar Agrár- és Élettudományi Egyetem, Akvakultúra és Környezetbiztonsági Intézet, Környezettoxikológia Tanszék
  • Micsinai Adrienn Eurofins Environment Testing Ltd.
  • Kaszab Edit Magyar Agrár- és Élettudományi Egyetem, Akvakultúra és Környezetbiztonsági Intézet

DOI:

https://doi.org/10.33038/jcegi.7311

Kulcsszavak:

mikroműanyag, szennyvíz

Absztrakt

A legújabb kutatások alapján a szennyvizekben található mikroműanyagok elősegíthetik a mikroorganizmusok kolonizációját, és vektorként szolgálhatnak az antibiotikum-rezisztencia gének (ARG-k) és az antibiotikum-rezisztens baktériumok (ARB-k) terjedésében. A mikroműanyagok jelenléte a szennyvíztisztítás teljes folyamatában igazolt, mely indokolja a szennyvíztisztító telepeken előforduló, mikroműanyagokhoz kötődő baktériumközösség vizsgálatát, különös tekintettel a környezeti és humán egészségre gyakorolt hatásokra.

Jelen tanulmány hatféle mikroműanyag mikrobiális kolonizációját vizsgálta szennyvízben, amelyek 2024 júniusa és 2025 márciusa között, három magyarországi szennyvíztisztító telep különböző kezelési fázisaiban (nyers és tisztított szennyvízben) kerültek kihelyezésre. Az inkubációt követően visszagyűjtött mikroműanyagokról szelektív Chromatic agar táptalajon tenyésztettünk antibiotikum-rezisztens baktériumokat, illetve szintén szelektív táptalajon dúsítottuk másik célszervezetünket, a Pseudomonas aeruginosa fajt. Az izolátumok azonosítása nemzetség szinten történt, mátrix-asszisztált lézerdeszorpciós/ionizációs repülési idő tömegspektrometriával (MALDI-TOF MS). Eredményeink alapján a Stenotrophomonas és Aeromonas nemzetségek, valamint az Enterobacteriaceae család tagjai voltak a mikroműanyagokhoz társuló domináns antibiotikum-rezisztens bakteriális taxonok.

Információk a szerzőről

Hivatkozások

ACARER, S. (2023): Microplastics in wastewater treatment plants: Sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants. Water Science and Technology, 87(3): 685–710. https://doi.org/10.2166/wst.2023.022

AMARAL-ZETTLER, L.A. – ZETTLER, E.R. – MINCER, T.J. (2020): Ecology of the plastisphere. Nature Reviews Microbiology, 18(3): 139–151. https://doi.org/10.1038/s41579-019-0308-0

ANDRADY, A.L. (2011): Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

ANDRADY, A.L. – NEAL, M.A. (2009): Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526): 1977–1984. http://doi.org/10.1098/rstb.2008.0304

BANDY, A. (2020): Ringing bells: Morganella morganii fights for recognition. Public Health, 182: 45–50. https://doi.org/10.1016/j.puhe.2020.01.016

BARGER, P.C. – LILES, M.R. – BECK, B.H. – NEWTON, J.C. (2021): Differential production and secretion of potentially toxigenic extracellular proteins from hypervirulent Aeromonas hydrophilia under biofilm and planktonic culture. BMC Microbiology, 21: 1–16. https://doi.org/10.1186/s12866-020-02065-2

BERT, F. – MAUBEC, E. – BRUNEAU, B. – BERRY, P. – LAMBERT-ZECHOVSKY, N. (1998): Multi-resistant Pseudomonas aeruginosa outbreak associated with contaminated tap water in a neurosurgery intensive care unit. Journal of Hospital Infection, 39(1): 53–62. https://doi.org/10.1016/S0195-6701(98)90243-2

BLANCH, A.R. – GALOFRE, B. – LUCENA, F. – TERRADILLOS, A. – VILANOVA, X. – RIBA, F. (2007): Characterization of bacterial coliform occurrences in different zones of a drinking water distribution system. Journal of Applied Microbiology, 102(3): 711–721. https://doi.org/10.1111/j.1365-2672.2006.03141.x

BRENNER, D.J. (1992): Introduction to the family Enterobacteriaceae. In: BALOWS, A. – TRÜPER, H.G. – DWORKIN, M. – HARDER, W. – SCHLEIFER, K.H. (eds.), The Prokaryotes, a Handbook on the Biology, Ecophysiology, Isolation, Identification, Applications. Volume 3, 2nd edition. Springer-Verlag, New York, USA, pp. 2673–2695.

BROOKE, J.S. (2012): Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clinical Microbiology Reviews, 25(1): 2–41. https://doi.org/10.1128/cmr.00019-11

CHUNG, K. – OKABE, S. (2009): Characterization of electrochemical activity of a strain ISO2- 3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Biotechnology and Bioengineering, 104(5): 901–910.

DUSSUD, C. – MEISTERTZHEIM, A.L. – CONAN, P. – PUJO-PAY, M. – GEORGE, M. – FABRE, P. – COUDANE, J. – HIGGS, P. – ELINEAU, A. – PEDROTTI, M.L. – GORSKY, G. – GHIGLIONE, J.F. (2018): Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environmental Pollution, 236: 807–816. https://doi.org/10.1016/j.envpol.2017.12.027

EINSCHLAG, F.S.G. – CARLOS, L. (2013): Waste Water: Treatment Technologies and Recent Analytical Developments. IntechOpen, Rijeka, 206 p.

EMADIAN, S.M. – ONAY, T.T. – DEMIREL, B. (2017): Biodegradation of bioplastics in natural environments. Waste Management, 59, 526–536. https://doi.org/10.1016/j.wasman.2016.10.006

ENGLER, R.E. (2012): The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Sscience & Ttechnology, 46(22): 12302–12315. https://doi.org/DOI: 10.1021/es3027105

FERNÁNDEZ-BRAVO, A. – FIGUERAS, M.J. (2020): An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms, 8(1): 129. https://doi.org/10.3390/microorganisms8010129

FIGUEIRA, V. – SERRA, E.A. – VAZ-MOREIRA, I. – BRANDÃO, T.R.S. – MANAIA, C.M. (2012): Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. Journal of Water & Health, 10(1): 1–10. https://doi.org/10.2166/wh.2011.002

FISSEL, J.A. (2024): Enter the matrix: An update on MALDI-ToF MS advancements through 2024. Clinical Microbiology Newsletter, 46: 22–26. https://doi.org/10.1016/J.CLINMICNEWS.2024.05.001

GHAFOOR, A. – HAY, I.D. – REHM, B.H. (2011): Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied and Environmental Microbiology, 77(15): 5238-5246. https://doi.org/10.1128/AEM.00637-11

GRAY, F.N. (2004): Biology of Wastewater Treatment. , 2nd Edition, Series of Environmental Science and Management, Volume 4. Imperial College Press, London, 1421 p.

HERNANDEZ, L.M. – XU, E.G. – LARSSON, H.C.E. – TAHARA, R. – MAISURIA, V.B. – TUFENKJI N. (2019): Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental Science and Technology, 53(21): 12300–12310. https://doi.org/10.1021/acs.est.9b02540

HOU, T.Y. – CHIANG-NI, C. – TENG, S.H. (2019): Current status of MALDI-TOF mass spectrometry in clinical microbiology. Journal of Food and Drug Analysis, 27(2): 404–414. https://doi.org/10.1016/j.jfda.2019.01.001

IYARE, P.U. – OUKI, S.K. – BOND, T. (2020): Microplastics removal in wastewater treatment plants: A critical review. Environmental Science: Water Research and Technology, 6(10): 2664–2675. https://doi.org/10.1039/d0ew00397b

KARKANORACHAKI, K. – SYRANIDOU, E. – KALOGERAKIS, N. (2021): Sinking characteristics of microplastics in the marine environment. Science of the Total Environment, 793: 148526. https://doi.org/10.1016/j.scitotenv.2021.148526

KIESSLING, T. – GUTOW, L. – THIEL, M. (2015): Marine Litter as Habitat and Dispersal Vector. In: BERGMANN, M. – GUTOW, L. – KLAGES, M. (eds.), Marine Anthropogenic Litter. Springer, Cham., pp. 141–153. https://doi.org/10.1007/978-3-319-16510-3_6

LECLERC, H. – MOSSEL, D.A.A. – EDBERG, S.C. – STRUIJK, C.B. (2001): Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annual Review of Microbiology, 55: 201–234. https://doi.org/10.1146/annurev.micro.55.1.201

LI, D. – YI, J. – HAN, G. – QIAO, L. (2022): MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS measurement science au, 2(5): 385–404. https://doi.org/10.1021/acsmeasuresciau.2c00019

LIU, R.P. – LI, Z.Z. – LIU, F. – DONG, Y. – JIAO, J.G. – SUN, P.P. – EL-WARDANY, R.M. (2021): Microplastic pollution in Yellow River, China: Current status and research progress of biotoxicological effects. China Geology, 4(4): 585–592. https://doi.org/10.31035/cg2021081

MAHTO, K.U. – DAS, S. (2022): Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. Bioresource Technology, 345: 126476. https://doi.org/10.1016/j.biortech.2021.126476

MENA, K.D. – GERBA, C.P. (2009): Risk assessment of Pseudomonas aeruginosa in water. Reviews of Environmental Contamination and Toxicology, 201: 71–115. https://doi.org/10.1007/978-1-4419-0032-6_3

NARANCIC, T. – O'CONNOR, K.E. (2019): Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology, 165(2): 129–137. https://doi.org/10.1099/mic.0.000749

ŠAMANIĆ, I. – KALINIĆ, H. – FREDOTOVIĆ, Ž. – DŽELALIJA, M. – BUNGUR, A.M. – MARAVIĆ, A. (2021): Bacteria tolerant to colistin in coastal marine environment: Detection, microbiome diversity and antibiotic resistance genes' repertoire. Chemosphere, 281: 130945. https://doi.org/10.1016/j.chemosphere.2021.130945

SHEKHAWAT, S.S. – KULSHRESHTHA, N.M. – GUPTA, A.B. (2020): Investigation of chlorine tolerance profile of dominant gram-negative bacteria recovered from secondary treated wastewater in Jaipur, India. Journal of Environmental Management, 255: 109827. https://doi.org/10.1016/j.jenvman.2019.109827

SILVA, I. – TACÃO, M. – HENRIQUES, I. (2024): Hidden threats in the plastisphere: Carbapenemase-producing Enterobacterales colonizing microplastics in river water. Science of The Total Environment, 922: 171268. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.171268

STEVENSON, E.M. – RUSHBY-JONES, O. – BUCKLING, A. – COLE, M. – LINDEQUE, P.K. – MURRAY, A.K. (2024): Selective colonization of microplastics, wood and glass by antimicrobial-resistant and pathogenic bacteria. Microbiology, 170(10): 001506. https://doi.org/10.1099/mic.0.001506

SZABÓ, I. – AL-OMARI, J. – SZERDAHELYI, G.S. – FARKAS, M. – AL-OMARI, Y. – SZABÓ, P.M. – SEBŐK, R. – GRIFFITTS, J. – KRISZT, B. – SZOBOSZLAY, S. (2021) In situ investigation of plastic-associated bacterial communities in a freshwater lake of Hungary. Water, Air, & Soil Pollution, 232(12): 493. https://doi.org/10.1007/s11270-021-05445-0

TALAGRAND-REBOUL, E. – JUMAS-BILAK, E. – LAMY, B. (2017): The social life of Aeromonas through biofilm and quorum sensing systems. Frontiers in Microbiology, 8: 37. https://doi.org/10.3389/fmicb.2017.00037

TARFEEN, N. – NISA, K.U. – NISA, Q. (2022): MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. Proceedings of the Indian National Science. Academy, 88: 277–291. https://doi.org/10.1007/s43538-022-00085-2

Letöltések

Megjelent

2025-11-28

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Mothoa, L. E., Prikler, B., Szabó, I., Micsinai, A., & Kaszab, E. (2025). Mikroműanyagokhoz társuló mikrobiális közösségek azonosítása a szennyvíztisztítás különböző fázisaiban és a befogadó felszíni vizekben MALDI-TOF MS módszerrel. Journal of Central European Green Innovation, 13(1), 3-13. https://doi.org/10.33038/jcegi.7311