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Abstract

This study presents a machine learning—based approach for predicting tool wear and
preventing tool breakage using vibration diagnostics in machining processes. By analysing
vibration signals (and, where applicable, acoustic emission), the proposed method enables
early fault detection and supports predictive maintenance strategies. The approach contributes
to sustainable manufacturing by reducing material waste, improving resource efficiency, and
extending tool lifetime. Experimental results demonstrate that vibration features effectively
distinguish between normal and abnormal tool conditions, highlighting the potential of Al-
assisted diagnostics in green innovation and Industry 4.0 applications.

Keywords: vibration diagnostics, predictive maintenance, machine learning, sustainable
manufacturing
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Osszefoglalas

A tanulmany egy gépi tanulason alapulo megkozelitést mutat be a szerszamkopds és a
szerszamtoreés elorejelzésére, a megmunkdlasi folyamatok sordn keletkezo rezgésjelek
elemzésével. A javasolt modszer a rezgés- és — ahol relevans — akusztikus emisszios (AE) jelek
feldolgozasaval lehetové teszi a hibdak korai felismerését és a prediktiv karbantartas
tamogatasat. A megkozelités hozzdjarul a fenntarthato gydrtishoz az anyagveszteség
csokkentésével, az eroforrds-hatékonysag novelésével és a szerszam élettartamanak
meghosszabbitasaval. A kisérleti eredmények igazoljak, hogy a rezgésalapu jellemzok
alkalmasak a normal és rendellenes szerszamallapotok megkiilonboztetésére, ami alatamasztja
a mesterséges intelligencia altal tamogatott diagnosztikai rendszerek alkalmazhatosagat a zold
innovdacio és az Ipar 4.0 keretrendszerében.

Kulesszavak: rezgésdiagnosztika, prediktiv karbantartds, gépi tanulds, fenntarthato gyartas
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Introduction

In modern machining, unexpected tool breakage threatens not only the tooling but also the
integrity of high-value workpieces. Preventing such events through early detection reduces
scrap, rework, and unplanned downtime—key aspects for resource efficiency and sustainable
manufacturing. Within this context, fool condition monitoring (TCM) has become a central
enabler of predictive maintenance, with recent surveys consolidating advances across sensing,
signal processing, and data-driven decision-making (MOHAMED et al., 2022; ABELLAN-
NEBOT - SUBIRON, 2010; KISHAWY et al., 2018).

Among indirect sensing modalities for TCM, vibration and acoustic emission (AE) are
prominent due to their sensitivity to mechanical anomalies and suitability for real-time
monitoring (KRISHNAKUMAR et al., 2018; KISHAWY et al., 2018). AE, with its high-
frequency content, is particularly effective for anticipating crack initiation, chipping, and
imminent fracture during tool-workpiece engagement, enabling timely intervention before
catastrophic failure (DORNFELD - DIEI, 1987; KRISHNAKUMAR et al., 2018). Effective
use of these signals requires appropriate preprocessing—amplification, sampling consistent
with Nyquist—-Shannon considerations, filtering, and segmentation—before feature extraction
and classification (MOHAMED et al., 2022).

While Fourier-domain features (e.g., spectra, cepstra) have long been standard in vibration-
based diagnostics (RANDALL - TECH, 1973; RANDALL, 2013), and modern classifiers are
well established in the applied machine learning (ML) literature (BOEHMKE - GREENWELL,
2019; KUHN, 2008), the present work deliberately focuses on the application aspects—
measurement design, practical feature engineering, model comparison, and validation on
experimental data—rather than re-deriving known mathematical foundations.

The goal of this study is to demonstrate a robust and practically applicable workflow for
predicting tool wear and imminent breakage from vibration and AE data. Beyond its diagnostic
accuracy, the approach aims to highlight operational benefits such as reduced material waste,
extended tool lifetime, and measurable improvements in energy efficiency and production
costs.

Specifically, we (1) design a vibration/AE acquisition setup tailored to milling operations, (i1)
extract frequency-distribution—based features and train multiple supervised machine learning
models (e.g., Support Vector Machines (SVM), random forest, logistic regression), (ii1)
evaluate performance with standard metrics and cross-validation, and (iv) discuss sustainability
impacts arising from fewer defective parts and longer useful tool life. The remainder is
organized as follows: Section 2 reviews related work in vibration/AE-based TCM and ML
approaches; Section 3 details the measurement setup, preprocessing, feature extraction, and
models; Section 4 reports comparative results; finally, Section 5 discusses implications,
limitations, sustainability aspects and outlines future directions.

Background

Vibration and Acoustic Emission in Tool Condition Monitoring

Tool Condition Monitoring systems have evolved from heuristic thresholding of physical
signals to advanced, data-driven decision-support frameworks. Among indirect sensing
modalities, vibration and acoustic emission (AE) have proven to be highly informative
indicators of tool wear and fracture phenomena (ABELLAN-NEBOT - SUBIRON, 2010;
KISHAWY et al., 2018; MOHAMED et al., 2022). Vibration analysis captures characteristic
mechanical resonances and transient responses associated with tool-workpiece interactions,
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while AE extends the observable frequency range to several hundred kilohertz, revealing micro-
crack formation and sudden failure events (DORNFELD - DIEI, 1987; KRISHNAKUMAR et
al., 2018).

Both techniques are non-intrusive and suitable for continuous monitoring in harsh industrial
environments. Early studies such as RANDALL - TECH (1973) and RANDALL (2013)
established the importance of frequency-domain representations—particularly Fourier and
cepstral methods—for isolating harmonic components linked to mechanical wear. However,
these classical approaches assume stationarity, which limits their applicability under variable
spindle speed or load conditions typical of modern high-speed machining.

Recent developments have shifted attention toward feature-based signal representations,
where time- and frequency-domain descriptors (e.g., root mean square (RMS), kurtosis, spectral
entropy, band energy ratios) are extracted prior to classification (MOHAMED et al., 2022).
Feature engineering is often complemented by dimensionality reduction such as Principal
Component Analysis (PCA) or Linear Discriminant Analysis (LDA), facilitating efficient
model training.

In this work we therefore employ standard Fourier-domain and statistical feature extraction
techniques as established in the literature (RANDALL, 2013), focusing on their practical
integration with machine learning models.

The transition from descriptive to predictive diagnostics has been largely driven by machine
learning. Supervised classifiers such as Support Vector Machines (SVM), Decision Trees,
Random Forests, and Artificial Neural Networks have demonstrated robust performance in tool
wear and breakage detection (KRISHNAKUMAR et al., 2018; ABELLAN-NEBOT -
SUBIRON, 2010; MOHAMED et al., 2022). Data-driven predictive maintenance enables
adaptive scheduling, reduced downtime, and improved productivity, aligning with the broader
objectives of Industry 4.0 (KUHN, 2008; BOEHMKE - GREENWELL, 2019).

Although deep learning approaches (e.g., convolutional networks) attract growing interest,
traditional algorithms remain highly relevant in industrial contexts due to their transparency,
interpretability, and lower computational requirements (MOHAMED et al., 2022). Integrating
ML-based diagnostics into machining enhances operational reliability and directly supports
sustainability: fewer scrapped parts, optimized tool usage, and lower energy consumption per
produced component.

Condition monitoring and predictive maintenance are integral to sustainable manufacturing
systems. By enabling early fault detection, such systems minimize waste material, reduce the
carbon footprint associated with rework, and extend equipment lifetime. Consequently, ML-
assisted vibration and AE diagnostics can be viewed as technological enablers of green
innovation, supporting resource efficiency and circular manufacturing paradigms. As
summarized by (MOHAMED et al., 2022). Integrating artificial intelligence into production
lines creates measurable environmental and economic benefits, reinforcing the motivation for
continued research in this direction.

Materials and Methods

Experimental Setup

The experimental measurements were conducted on a CNC vertical milling machine equipped
for multi-axis operation and designed for precision finishing processes. The test setup included
a tri-axial accelerometer mounted near the tool holder to capture vibrations originating from the
cutting zone, as well as an acoustic emission (AE) sensor attached to the machine frame to
record high-frequency stress waves associated with crack formation. Both sensors were
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connected to a National Instruments data acquisition (DAQ) unit through charge amplifiers,
providing synchronized analogue inputs with adjustable gain and filtering options.

The experiments were performed using tungsten—carbide end mills of diameter 10~mm,
cutting a standardized steel workpiece under controlled feed and speed parameters. The
machine’s spindle speed and feed rate were varied systematically to induce measurable changes
in vibration characteristics during tool wear progression.

The machining experiments conducted within the project framework involved face-milling
cycles that alternated between up-milling and down-milling along the Y-axis, using a 50 % tool
diameter overlap. The variable machining parameters were the spindle speed (1000, 1200, and
3000 rpm), feed rate (250, 500, and 1000 mm/min), and depth of cut (1-2 mm). The tested
workpiece materials included engineering plastics (POM), two different aluminium alloys, and
steel (C45). The applied tools were 20 mm and 8 mm diameter end mills, as well as a milling
head equipped with five inserts. For aluminium and steel, the experiments were performed with
emulsion-based cooling. Both new and pre-worn tools were included in the tests. These
quantitative and qualitative parameters jointly influence the onset of tool failure and the
corresponding vibration and acoustic emission patterns observed during fracture. A detailed
description of the measurement procedures can be found in ZSIDAI et al. (2025).

Each machining trial was continued until visible wear marks or fracture appeared on the
cutting edge. The AE signal amplitude and root mean square values were monitored
continuously to detect the onset of micro-cracks. Sensor placement and signal routing were
selected to minimize electromagnetic interference and cross-talk from spindle drive
components. All signals were sampled at 50 kHz to ensure compliance with the Nyquist—
Shannon sampling theorem and to preserve sufficient spectral resolution for subsequent
analysis (RANDALL - TECH, 1973; RANDALL, 2013). Ambient temperature and humidity
were recorded for reference but had negligible influence on the results.

Figure 1 illustrates the schematic representation of the bidirectional face-milling process
applied during the vibration and acoustic emission measurements. This configuration ensured
consistent tool-workpiece engagement and repeatable load conditions under controlled spindle
speed and feed parameters.

Figure 1. Schematic illustration of the bidirectional face-milling pattern used in the
experiments.

Among the several experimental configurations, the following setup was selected to illustrate
the applicability of ML methods for predicting tool breakage: a spindle speed of 1200 rpm, feed
rate of 1000 mm/min, and depth of cut of 2 mm. Two representative measurements were
performed under these conditions—one using a new tool and another with a pre-worn tool—
hereafter referred to as measurement #296 and measurement #300, respectively. In both cases
the workpieces were C45 steel.
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Data Processing and Feature Extraction

As mentioned earlier, the analysis relies primarily on the acoustic emission (AE) and vibration
signals measured during the cutting process.

In addition to the usual data preprocessing procedures—such as handling outliers,
measurement errors, and missing values—it is essential to emphasize the importance of signal
segmentation (DORNFELD - DIEI, 1987; KRISHNAKUMAR et al., 2018).

Since tool damage or breakage can occur only when the tool is in contact with the workpiece,
the idle (non-cutting) sections of the AE signal must first be identified and excluded.

These idle periods are characterized by significantly lower amplitude and frequency content,
and they can be readily detected by visual inspection of the recorded waveform.

Figures 2 and 3 present the AE signals from measurements #296 and #300, respectively. The
normalized signal amplitude is markedly lower during idle operation compared with the active
cutting phase. The figure was generated from the corresponding .wav file using the
open-source program Audacity (AUDACITY TEAM, 2024), which proved useful for visual
inspection and preliminary segmentation of the acoustic data.
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Figure 2. Acoustic emission amplitude as a function of time for measurement #296. The
normalized amplitude is considerably lower during idle operation than during tool-
workpiece contact. The figure was generated from the original .wav file using Audacity.
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Figure 3. Acoustic emission amplitude as a function of time for measurement #300. The
normalized amplitude is considerably lower during idle operation than during tool-
workpiece contact. The figure was generated from the original .wav file using Audacity.

After segmentation, the raw vibration and AE signals were pre-processed to remove low-
frequency noise and unwanted environmental disturbances. A fourth-order Butterworth high-
pass filter with a 500 Hz cutoff frequency was applied to eliminate structural resonance effects
from the machine frame while maintaining the frequency content relevant to tool-workpiece
interaction. The AE signal was additionally subjected to envelope detection to capture impact-
like transient phenomena associated with crack initiation and tool chipping (KISHAWY et al.,
2018; KRISHNAKUMAR et al., 2018).

For spectral analysis, the Fast Fourier Transform (FFT) was applied to the filtered vibration
signals to obtain amplitude spectra. Although advanced time—frequency representations (e.g.,
short-time Fourier transform or wavelet analysis) could have been employed, the classical FFT-
based approach proved sufficient for detecting dominant frequency bands correlated with tool
wear (RANDALL - TECH, 1973; RANDALL, 2013).

Following the recommendations of CAUSOL et al. (2021), a window length of
approximately 2500 samples was found to provide the most reliable estimation of frequency-
dependent variations in tool condition. Since the FFT algorithm requires window sizes that are
powers of two, a length of 211 = 2048 samples was selected as the closest suitable value. Given
the 0.000005 s sampling interval of the AE signal, this window covers a time span of 0.01024
s. According to best practices reported in the literature, a 50 % overlap between consecutive
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windows offers an optimal trade-off between computational efficiency and information
retention. Therefore, this configuration was adopted in our study. Among various possible
windowing functions, the Hann (Hanning) window was chosen due to its smooth spectral
leakage characteristics (BOASHASH, 2003). All FFT computations were performed in the
MATLAB environment (MATHWORKS, 2025).

Figure 4 depicts a representative frequency-domain signal obtained during stable and worn
tool conditions, showing clear amplitude growth near the tool’s natural vibration frequency.
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Figure 4. Frequency spectra of the vibration signal under (a) normal and (b) broken tool
conditions, corresponding to measurement #296.

To facilitate machine learning—based classification, statistical and spectral features were
extracted from the processed signals in both time and frequency domains. These included RMS,
variance, skewness, kurtosis, spectral centroid, spectral entropy, and band power ratios
computed over characteristic frequency intervals. The AE features additionally incorporated
event counts and cumulative energy within defined time windows. All subsequent statistical
analyses and visualizations were performed using the RStudio environment (POSIT, 2025).

Prior to training, all feature vectors were standardized to zero mean and unit variance to
ensure balanced scaling across dimensions. Principal Component Analysis (PCA) was used to
reduce redundancy and highlight the most discriminative features before model fitting.

To validate data integrity, segments with missing samples or excessive noise were
automatically removed based on signal energy thresholds. Approximately 5 % of the raw data
was discarded due to mechanical disturbances such as tool changes or spindle ramp-up phases.
The resulting dataset served as the input for model training and validation described in the
following subsection.

Machine Learning Models

Based on the extracted statistical and spectral features, several supervised machine learning
algorithms were applied to classify tool conditions into normal and failure states. A
comprehensive set of ten supervised learning algorithms was tested to evaluate classification
performance and model robustness. The investigated models included Random Forest (RF),
Support Vector Machine (SVM) (including the case with linear and polynomial kernels as well
as kernel-based regression (SVML, SVMP , SVMR), and Artificial Neural Network (ANN)
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classifiers. In addition, additional algorithms such as k-Nearest Neighbours (KNN),
Generalized Linear Models (GLM), Linear and Quadratic Discriminant Analysis (LDA, QDA)
and Logistic Regression (LogReg) were also examined for completeness. Each model was
trained using 80 % of the available samples, with the remaining 20 % reserved for validation.
To minimize overfitting, ten-fold cross-validation was applied during model selection, and
hyperparameters were tuned using a grid search approach. All model training, tuning, and
evaluation were conducted in R 4.1.2 using the caret framework, and performance was assessed
using both overall accuracy and Cohen’s Kappa coefficient.

The SVM algorithm was implemented with both linear and nonlinear kernels. In the linear
case, the algorithm determines a hyperplane that maximizes the margin between two data
classes, as illustrated in Figure 5. Nonlinear kernels, particularly the Radial Basis Function
(RBF), were also evaluated to capture higher-order feature dependencies. In some
configurations, polynomial kernels (SVMP) were additionally tested to explore more complex
boundary shapes within the feature space.
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Figure 5. Illustration of (a) linear and (b) nonlinear Support Vector Machine (SVM)
classification boundaries separating the two classes.

Decision Tree classifiers were trained with varying maximum depths and minimum leaf sizes
to balance model complexity and accuracy. The Random Forest approach, as an ensemble of
decision trees, provided improved generalization by averaging across multiple randomized
trees. The RF offered interpretable results, allowing identification of the most influential
vibration and acoustic features. Additionally, the k-Nearest Neighbours (KNN) method was
included as a non-parametric benchmark model, which provided insight into local decision
behaviour within the feature space.

A feed-forward Artificial Neural Network (ANN) was also trained, consisting of an input
layer matching the feature vector dimension, one hidden layer with ReLU activation, and an
output layer using the softmax function for binary classification. Although the schematic
representation of the applied ANN is omitted here, it followed the standard fully connected
architecture commonly used in two-class problems.

Results

The classification results are presented for two representative measurements, #296 and #300,
which correspond to distinct cutting trials conducted under comparable spindle speed and feed
conditions. Both measurements exhibit clear spectral differences between normal and failure
states, demonstrating the discriminative potential of vibration-based features.
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Figures 6 and 7 show the spectral amplitude distributions across the 1st—10th decile quantiles.
In both cases, the frequency bands associated with tool failure display a broader and more
asymmetric distribution, indicating higher vibrational energy dispersion as the cutting edge
degrades. This spectral spreading is a typical precursor of chipping and progressive wear,
confirming that vibration-based spectral indicators can serve as early warning features for tool
health monitoring.
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Figure 6. Spectral distributions for the 1st—10th decile quantiles based on Measurement
#296 (0: normal operation; 1: tool failure).
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Figure 7. Spectral distributions for the 1st—10th decile quantiles based on Measurement
#300 (0: normal operation; 1: tool failure).
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The extracted features were used to train ten supervised learning models under identical data
partitions and preprocessing. Each algorithm was evaluated using repeated cross-validation,
and the results were summarized by the minimum, first quartile, median, mean, third quartile,
and maximum values of classification accuracy and Cohen’s k. Table 1 A and B provide a
comparative overview for Measurements #296 and #300.

Table 1. Descriptive statistics ((minimum, median, mean, maximum, 1% and 374
quartiles) of classification accuracy and Cohen’s k for ten algorithms based on A:
Measurement #296. B: Measurement #300: Random Forest (RF), Support Vector

Machine with linear, and polynomial kernels as well as kernel-based regression (SVML,
SVMR, SVMP), k-Nearest Neighbours (KNN), Generalized Linear Models (GLM),
Linear and Quadratic Discriminant Analysis (LDA, QDA), Artificial Neural Network
(ANN), Logistic Regression (LogReg).

A Accuracy Cohen’s k
Min 1st Media Mea Max | Min Media Mea Max
Model Q n n 3rd Q IstQ n n 3rd Q

RF 0.63 0.80 0.87 087 093 1.001{0.02 044 059 063 081 1.00
SVML 0.64 0.80 0.87 086 0.93 1.00 (0.00 044 0.59 0.58 0.81 1.00
SVMR 0.60 0.80 0.87 0.85 093 1.00 (0.00 0.44 0.59 0.57 0.81 1.00
SVMP 0.71 0.80 0.87 0.87 0.93 1.00 0.00 044 0.59 0.61 0.81 1.00
KNN 0.73 0.80 0.87 0.86 0.89 1.00 |0.00 0.44 059 0.60 0.74 1.00
GLM 0.67 0.80 0.87 086 093 1.00|0.07 048 066 0.63 0.81 1.00
LDA 0.60 0.80 0.87 086 093 1.00{0.00 044 059 062 081 1.00
QDA 0.67 0.79 0.87 0.83 0.87 1.000.00 041 059 055 0.71 1.00
ANN 0.64 0.80 0.87 085 093 1.00{0.00 033 059 056 081 1.00

LogRe

g 0.60 0.80 0.87 0.86 093 1.00 [0.00 0.51 0.66 0.63 081 1.00
B Accuracy ‘ Cohen’s K

Model Min Ist Media Mea 3rdQ Max Min. 1stQ Media Mea 3rd Q Max

. Q n n . n n .
RF 0.67 0.80 0.87 0.85 093 1.00|0.00 044 059 057 081 1.00
SVML 0.71 0.80 0.87 085 0.89 1.00| 0.00 033 059 054 0.71 1.00
SVMR 0.57 0.80 087 0.85 093 1.00]0.00 033 0.59 0.57 081 1.00
SVMP 0.67 0.80 0.87 0.87 093 1.00| 0.00 044 059 0.60 0.81 1.00
KNN 0.71 0.80 0.87 086 093 1.00| 0.00 044 059 0.60 0.81 1.00
GLM 053 0.79 086 0.83 093 1.00|0.00 039 0.59 056 081 1.00
LDA 0.60 0.80 0.86 0.84 093 1.00|0.00 044 059 057 0.81 1.00
QDA 0.64 0.78 0.81 0.83 0.88 1.00| 0.00 041 053 054 0.71 1.00
ANN 0.67 0.80 0.87 0.84 087 1.00|0.00 0.33 059 0.51 0.59 1.00
LogRe 0.64 0.75 0.83 0.83 093 1.00| 0.00 0.34 056 0.56 0.81 1.00
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All tested models demonstrated overall stable generalization behaviour. Across both
measurements (#296 and #300), the machine learning models demonstrated strong predictive
performance, with mean accuracies typically ranging from 83% to 87%. The median accuracy
for most algorithms was consistently high at 87%, indicating that in a typical scenario, most
models perform very well.

Two models stand out for their superior and consistent performance across both
measurements. The Support Vector Machine with Polynomial Kernel (SVMP) achieved the
highest or joint-highest mean accuracy on both measurements (0.87 on both #296 and #300). It
also maintained a high mean Cohen's Kappa, suggesting its classifications are reliable.

The k-Nearest Neighbours (KNN) is another robust performer. It had a high mean accuracy
(0.86 on both measurements) and, most notably, the highest minimum accuracy on
measurement #296 (0.73) and was tied for the highest on measurement #300 (0.71). This
indicates that KNN is the most reliable model, with the best worst-case performance.

The high k values of both models confirm robust agreement between predicted and actual
tool states, implying good generalization despite moderate dataset size.

Though the performances of SVMP and KNN models are slightly better and more consistent
on measurement #296 compared to measurement #300, the similarity of the results for the two
measurements indicates strong reproducibility across separate cutting trials, suggesting that the
extracted features capture stable vibration patterns independent of the specific workpiece or
tool-condition sequence.

The RF, GLM and LDA models performed exceptionally well on measurement #296,
rivalling the top-tier models, but showed a noticeable drop in performance on measurement
#300. This suggests they may be less robust to variations in the data.

SVML and ANN models delivered solid, acceptable performance across both measurements
but never reached the top of the rankings while QDA consistently ranked at or near the bottom
across both measurements.

Discussion and Conclusions

The experimental results confirm that vibration- and AE-based features can effectively
distinguish between normal and abnormal tool states. While most of the tested algorithms are
effective for these tasks, the SVMP and KNN models are the most distinguished showing that
the task associated with measurement #300 appears to be slightly more difficult than that of
#296. SVMP consistently delivered the highest average classification accuracy and agreement
values, while KNN proved to be the most reliable and robust model, making it a safe choice to
avoid poor outcomes, and indicating strong suitability for fault detection tasks. In contrast,
discriminant analysis consistently underperformed, making it the least suitable choice for these
classification tasks. The ANN model with its higher computational demands and not
outstanding performance is less practical for real-time monitoring. RF, GLM, LogReg, and
LDA demonstrated high potential, even outperforming others however, their sensitivity to data
variations makes them less reliable choices.

Although the models demonstrated consistent performance across independent
measurements, the results are still conditioned on the specific machine setup and material
parameters used during the trials. Variations in spindle speed, feed rate, or workpiece material
could alter the vibration response, requiring re-validation or retraining of the models for new
conditions. Furthermore, the size of the available dataset limited the statistical robustness of the
evaluation. Expanding the database with additional cutting trials, different tool geometries, and
varying operational regimes would strengthen the model’s generalizability and facilitate
adaptive learning approaches.
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It is also important to note that the neural network model, despite its potential for nonlinear
representation, proved less efficient under limited data availability. Future work could explore
hybrid or ensemble learning architectures that combine the interpretability of tree-based models
with the adaptability of neural methods while maintaining computational efficiency.

Future research will focus on extending the developed diagnostic framework toward real-
time implementation and autonomous decision support. Integration with edge-computing
devices would enable continuous in-process monitoring without interrupting production cycles.
Additionally, incorporating online learning or transfer learning mechanisms could allow the
system to adapt to gradual changes in machine dynamics and cutting environments.

Beyond technical development, further studies will assess the long-term sustainability
benefits of predictive maintenance—including reductions in waste, tool consumption, and
carbon footprint—to quantify the environmental impact of intelligent diagnostics in industrial
machining.

From an application standpoint, the combination of Fourier-based spectral analysis and
classical machine learning models provides a compact yet powerful diagnostic framework. The
present work demonstrates that vibration- and AE-based feature extraction combined with
classical machine learning models provides a reliable and scalable foundation for predictive
maintenance.

The ability to detect the early onset of tool degradation enables proactive replacement before
catastrophic failure, thereby reducing scrap rates, tool expenditures, and unplanned production
downtime. These advancements directly contribute to the objectives of sustainable
manufacturing by decreasing energy usage and material waste, while simultaneously supporting
the broader framework of green innovation and Industry 4.0-driven process optimization.
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