The Effect of Seasonal Groundwater Level Rise on the Zeleny Value of Winter Wheat

Authors

  • György Kerezsi Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Department of Environmental Analysis and Technologies
  • István Waltner Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Department of Water Management and Climate Adaptation
  • Gábor Géczi Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Department of Environmental Analysis and Technologies

DOI:

https://doi.org/10.33038/jcegi.7316

Keywords:

winter wheat, yield, lyzimeter, groundwaterlevel

Abstract

The topic of the research is to examine the effect of temporary waterlogging on winter wheat under controlled, lysimeter conditions. The aim was to analyze plant responses specifically yield and the Zeleny value at different water levels of 0 cm (two-phase soil), −30 cm (water level set at 30 cm below the surface), and −60 cm (water level set at 60 cm below the surface) and durations (3, 6, 9, 12 days). The statistical methods used MANOVA, ANOVA, Welch’s test, the Games-Howell post-hoc test, and multivariate correlation helped map significant differences in the results. The Pearson correlation matrix confirmed a highly significant, strong positive correlation between the quality indicators (r = 0,955-0,989, p < 0,001), whereas yield showed a weak positive correlation with the quality parameter (r = 0,155). According to the Games-Howell post-hoc tests, for the Zeleny value, moderate stress particularly the 9-day treatment at a −60 cm water level significantly improved quality (e.g., 2021, −60 cm, 9 days vs. 3 and 6 days: p = 0,031 and p = 0,004). Under the same conditions (e.g., 2021, −60 cm, 9 days), yield did not differ significantly from the control according to Welch’s t-test (p = 0,4032). Quality improvement is not necessarily associated with yield increase; indeed, in other cases yield may even decrease. In 2021, at the 0 cm water level, the 6-day treatment significantly reduced yield (p = 0,0496), while the 9- and 12-day treatments increased it (p = 0,009, p = 0,034). Zeleny value: in 2020 at −60 cm, the continuous treatment was significantly worse than the 12-day treatment (p = 0,004), whereas in 2019 at the same water depth, the continuous treatment was significantly better than the 3-day treatment (p < 0,0001). For yield, in 2021 at −60 cm, continuous flooding resulted in a significantly lower yield than the 12-day treatment (p = 0,005). Conversely, in 2020 at −60 cm, the continuous treatment was significantly better than the 3-day (p = 0,026) and 9-day (p = 0,003) treatments. This pattern underscores the risky and year-specific nature of continuous treatment.

Author Biography

  • György Kerezsi, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Department of Environmental Analysis and Technologies

    corresponding author
    kerezsi.gyorgy@uni-mate.hu

References

ABBASI, H. – EMAM‐DJOMEH, Z. – ARDABILI, S.M.S. (2014): Artificial Neural Network Approach Coupled with Genetic Algorithm for Predicting Dough Alveograph Characteristics. Journal of Texture Studies 45, 110–120. https://doi.org/10.1111/jtxs.12054

ARAKI, H. – HAMADA, A. – HOSSAIN, M.A. – TAKAHASHI, T. (2012): Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research 137, 27–36. https://doi.org/10.1016/j.fcr.2012.09.006

BAGHERIKIA, S. – SOUGHI, H. – KHODARAHMI, M. – NAGHIPOUR, F. (2025): The Effect of Sowing Dates on Grain Yield and Quality in Spring Wheat (Triticum aestivum L.). Food Science & Nutrition 13, e70035. https://doi.org/10.1002/fsn3.70035

BÍRÓNÉ KIRCSI, A. (2020): Súlyos aszály 2020 áprilisában. Tanulmányok. URL https://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=2808

CHEN, J. – YANG, T.T. – YAN, S.H. – YONG, Y.D. – ZHANG, S.Y. – LI, W.Y. (2024): Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat. Acta Agronomica Sinica(China) 50, 1877–1884. https://doi.org/10.3724/SP.J.1006.2024.31072

CUI, J. – SHAO, G. – KEABETSWE, L. – LU, J. – DING, J. – YU, S. – HOOGENBOOM, G. (2020): Gas exchange traits, growth and yield attributes in winter wheat under waterlogging stress during anthesis. International Journal of Agriculture and Biology 24, pp.179-187. https://doi.org/10.17957/IJAB/15.1422

DE SAN CELEDONIO, R.P. – ABELEDO, L.G. – MIRALLES, D.J. (2014): Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 378, 265–277. https://doi.org/10.1007/s11104-014-2028-6

DING, J. – HUANG, Z. – ZHU, M. – LI, C. – ZHU, X. – GUO, W. (2018): Does cyclic water stress damage wheat yield more than a single stress? PLoS ONE 13, e0195535. https://doi.org/10.1371/journal.pone.0195535

DING, J. – LIANG, P. – WU, P. – ZHU, M. – LI, C. – ZHU, X. – GAO, D. – CHEN, Y. – GUO, W. (2020): Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Research 246, 107695. https://doi.org/10.1016/j.fcr.2019.107695

DINKA, M.O. – NDAMBUKI, J.M. (2014) Identifying the Potential Causes of Waterlogging in Irrigated Agriculture: The Case of the Wonji-Shoa Suger Cane Plantation (Ethiopia). Irrigation and Drainage 63, 80–92. https://doi.org/10.1002/ird.1791

DOUVILLE, H. – ALLAN, R.P. – ARIAS, P.A. – BETTS, R.A. – CARETTA, M.A. – CHERCHI, A. – MUKHERJI, A. – RAGHAVAN, K. – RENWICK, J. (2022): Water remains a blind spot in climate change policies. PLOS Water 1, e0000058. https://doi.org/10.1371/journal.pwat.0000058

ERDŐDINÉ MOLNÁR, Z. – KOVÁCS, A. (2021): Aszályos, fagykáros tavasz után nyári csapadéktöbblet – 2020-as év agrometeorológiai áttekintése. Tanulmányok. https://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=2963&hir=Aszalyos,_fagykaros_tavasz_utan_nyari_csapadektobblet_%E2%80%93_2020-as_ev_agrometeorologiai_attekintese

ERDŐDINÉ MOLNÁR, Z. – KOVÁCS, A. (2020): 2019-es év agrometeorológiai áttekintése. Tanulmányok. https://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=2727

FISCHER, R.A. (1985): Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal Agricultural Science 105, 447–461. https://doi.org/10.1017/S0021859600056495

FOSS (2014): InfratectextsuperscriptTM NOVA Grain Analyser for grain and flour.

FOSS (2023): InfratecTM NOVA Grain Analyzer Manual. Foss Analytical A/S, Hillerød, Denmark.

GAILE, Z. – BANKINA, B. – PLUDUMA-PAUNINA, I. – STERNA, L. – BIMSTEINE, G. – SVARTA, A. – KANEPS, J. – ARHIPOVA, I. – SUTKA, A. (2023): Performance of Winter Wheat (Triticum aestivum) Depending on Fungicide Application and Nitrogen Top-Dressing Rate. Agronomy 13, 318. https://doi.org/10.3390/agronomy13020318

HERZOG, M. – STRIKER, G.G. – COLMER, T.D. – PEDERSEN, O. (2016): Mechanisms of Waterlogging Tolerance in Wheat—A Review of Root and Shoot Physiology. Plant, Cell & Environment 39, 1068–1086. https://doi.org/10.1111/pce.12676

HOSSAIN, M.A. – ARAKI, H. – TAKAHASHI, T. (2011): Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan. Field Crops Research 123, 100–108. https://doi.org/10.1016/j.fcr.2011.05.005

IBADZADE, M. (2021): Assessing the impact of irrigation with agricultural wastewater on aerobic rice (Oryza sativa L.). Doktori értekezés. Magyar Agrár- és Élettudományi Egyetem. https://doi.org/10.54598/000840

ILYÉS, C. – TURAI, E. – SZŰCS, P. (2018): Examination of rainfall data for 110 years using spectral and wavelet analysis. Central European Geology 61, 1–15. https://doi.org/10.1556/24.61.2018.01

JÚNIOR, R.S.N. – ASSENG, S. – GARCÍA-VILA, M. – LIU, K. – STOCCA, V. – VIANNA, M.D.S. – WEBER, T.K.D. – ZHAO, J. (2023): A Call to Action for Global Research on the Implications of Waterlogging for Wheat Growth and Yield. Agricultural Water Management 284, 108334. https://doi.org/10.1016/j.agwat.2023.108334

KISS K. – OROSZLÁNY I. – VAJDAI I. (1981) Gazdálkodás belvizes területeken. Mezőgazdasági K., Budapest, 144.

KOLOZSVÁRI, I. (2023): Intenzív üzemű halnevelő telep elfolyóvizének öntözéses hasznosítása rövid vágásfordulójú energiafűz ültetvényben és szemescirok kultúrákban. Doktori értekezés. Magyar Agrár- és Élettudományi Egyetem (MATE). https://doi.org/10.54598/004230

KUN, Á. (2018): Intenzív üzemű halnevelő-telepről származó szennyvíz mezőgazdasági elhelyezésének és hasznosításának vizsgálata energiafűz kísérletben. Doktori értekezés. Szegedi Tudományegyetem, Szeged, Hungary. https://doi.org/10.14232/phd.4171

LI, X. – CAI, J. – LIU, F. – DAI, T. – CAO, W. – JIANG, D. (2014): Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Functional Plant Biology 41, 690. https://doi.org/10.1071/FP13306

LIU, K. – HARRISON, M.T. – ARCHONTOULIS, S.V. – HUTH, N. – YANG, R. – LIU, D.L. – YAN, H. – MEINKE, H. – HUBER, I. – FENG, P. – IBRAHIM, A. – ZHANG, Y. – TIAN, X. – ZHOU, M. (2021): Climate change shifts forward flowering and reduces crop waterlogging stress. Environmental Research Letters 16, 094017. https://doi.org/10.1088/1748-9326/ac1b5a

MARTI, J. – SAVIN, R. – SLAFER, G.A. (2015): Wheat Yield as Affected by Length of Exposure to Waterlogging During Stem Elongation. Journal of Agronomy and Crop Science 201, 473–486. https://doi.org/10.1111/jac.12118

MIRALLES, D.J. – RICHARDS, R.A. – SLAFER, G.A. (2000): Duration of the stem elongation period influences the number of fertile florets in wheat and barley. Functional Plant Biology 27, 931. https://doi.org/10.1071/PP00021

NEUKUM, C. – AZZAM, R. (2012): Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeol Journal 20, 547–560. https://doi.org/10.1007/s10040-011-0827-x

NOSETTO, M.D. – JOBBÁGY, E.G. – JACKSON, R.B. – SZNAIDER, G.A. (2009): Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Research 113, 138–148. https://doi.org/10.1016/j.fcr.2009.04.016

OZTURK, A. – AYDIN, F. (2004): Effect of Water Stress at Various Growth Stages on Some Quality Characteristics of Winter Wheat. Journal of Agronomy and Crop Science 190, 93–99. https://doi.org/10.1046/j.1439-037X.2003.00080.x

PACHAURI, R.K. – ALLEN, M.R. – BARROS, V.R. – BROOME, J. – CRAMER, W. – CHRIST, R. – CHURCH, J.A. – CLARKE, L. – DAHE, Q. – DASGUPTA, P. (2014): Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.

PÁLFFY, B. – FEKETE, I. – BARTA, K. (2022): Conceptual Change in Excess Water Management: Soil and Water Quality Issues. Agrokémia Talajtan 71, 219–238. https://doi.org/10.1556/0088.2022.00114

PAN, J. – SHARIF, R. – XU, X. – CHEN, X. (2021): Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Frontiers in Plant Science 11, 627331. https://doi.org/10.3389/fpls.2020.627331

PANG, Y. – WANG, X. – ZHAO, M. – LU, Y. – YAN, Q. – SUN, S. – WANG, Y. – LIU, S. (2022): Identification and Validation of the Genomic Regions for Waterlogging Tolerance at Germination Stage in Wheat. Agronomy 12, 1848. https://doi.org/10.3390/agronomy12081848

PATAY, I. – MONTVAJSZKI, M. (2011): Belvíztestek matematikai modellezése. Hidrológiai Közlöny.

PAUK, J. – LANTOS, C. – CSEUZ, L. – PAPP, M. – ÓVÁRI, J. – BEKE, B. – PUGRIS, T. (2020): ’GK Déva’ dihaploid módszer segítségével előállított új őszi búzafajta, in: XXVI. Növénynemesítési Tudományos Napok: Összefoglaló kötet. MTA Agrártudományok Osztálya Növénynemesítési Tudományos Bizottság; Magyar Növénynemesítők Egyesülete, Gabonakutató Nonprofit Közhasznú Kft., Szeged, Hungary, 102.

PLOSCHUK, R.A. – MIRALLES, D.J. – COLMER, T.D. – PLOSCHUK, E.L. – STRIKER, G.G. (2018): Waterlogging of Winter Crops at Early and Late Stages: Impacts on Leaf Physiology, Growth and Yield. Frontiers in Plant Science 9, 1863. https://doi.org/10.3389/fpls.2018.01863

RAKONCZAI, J. – MUCSI, L. – SZATMÁRI, J. – KOVÁCS, F. – CSATÓ, S. (2001): A belvizes területek elhatárolásának módszertani lehetőségei, in: Földrajzi Konferencia, Szeged 2001.

SANTA, B. – FREI, M. – BAROCSAI, Z. (2025): Improving the water retention properties of our soils. Hidrológiai Közlöny 105, 58–71. https://doi.org/10.59258/hk.19316

SHAO, G.C. – LAN, J.J. – YU, S.E. – LIU, N. – GUO, R.Q. – SHE, D.L. (2013): Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages. Photosynthetica 51, 429–437. https://doi.org/10.1007/s11099-013-0039-9

SHE, Y. – LI, P. – QI, X. – GUO, W. – RAHMAN, S.U. – LU, H. – MA, C. – DU, Z. – CUI, J. – LIANG, Z. (2022): Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat. Agriculture 12, 311. https://doi.org/10.3390/agriculture12020311

SHENG, K. – XU, L. – WANG, M. – LEI, H. – DUAN, A. (2022): The end-use quality of wheat can be enhanced by optimal water management without incurring yield loss. Frontiers in Plant Science 13, 1030763. https://doi.org/10.3389/fpls.2022.1030763

STATKEVIČIŪTĖ, G. – LIATUKAS, Ž. – CESEVIČIENĖ, J. – JAŠKŪNĖ, K. – ARMONIENĖ, R. – KUKTAITE, R. – BRAZAUSKAS, G. (2022): Impact of Combined Drought and Heat Stress and Nitrogen on Winter Wheat Productivity and End-Use Quality. Agronomy 12, 1452. https://doi.org/10.3390/agronomy12061452

SZÉKELY, Á. (2023): A sóstressz és az alacsony hőmérséklet hatásainak vizsgálata a rizs (Oryza sativa l.) fejlődésére Doktori értekezés. Magyar Agrár- és Élettudományi Egyetem. https://doi.org/10.54598/004000

SZENTES, O. (2021): Extrém szárazság és forróság 2021 júniusában. Tanulmányok. https://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=3049

WAHREN, A. – RICHTER, F. – JULICH, S. – JANSEN, M. – FEGER, K. (2015): The Influence of More Widespread Cultivation of Short Rotation Coppice on the Water Balance: From the Site to the Regional Scale, in: Manning, D.B. – Bemmann, A. – Bredemeier, M. – Lamersdorf, N. – Ammer, C. (Eds.), Bioenergy from Dendromass for the Sustainable Development of Rural Areas. Wiley, pp. 45–62. https://doi.org/10.1002/9783527682973.ch5

WOLLMER, A.C. – PITANN, B. – MÜHLING, K.H. (2018): Nutrient deficiencies do not contribute to yield loss after waterlogging events in winter wheat (Triticum aestivum ). Annals of Applied Biology 173, 141–153. https://doi.org/10.1111/aab.12449

WU, J.D. – LI, J.C. – WANG, C.Y. – WEI, F.Z. – ZHANG, Y. – WU, W.M. (2013): Effects of spraying foliar nitrogen on activities of key regulatory enzymes involved in protein formation in winter wheat suffered post-anthesis high temperature and waterlogging. Journal of Food, Agriculture and Environment 11(2): 668-673. https://doi.org/10.1234/4.2013.4393

WU, Q., –TAN, J. – ZHU, J. – WANG, W. – HAN, R. – ZOU, J. (2021): Effects of waterlogging after anthesis on the grain filling characteristics of winter wheat with different waterlogging tolerances. Transactions of the Chinese Society of Agricultural Engineering 37, 74–81. https://doi.org/10.11975/j.issn.1002-6819.2021.18.009

WU, X. – TANG, Y. – LI, C. – MCHUGH, A.D. – LI, Z. – WU, C. (2018): Individual and Combined Effects of Soil Waterlogging and Compaction on Physiological Characteristics of Wheat in Southwestern China. Field Crops Research 215, 163–172. https://doi.org/10.1016/j.fcr.2017.10.016

WU, X. – TANG, Y. – LI, C. – WU, C. – HUANG, G. (2015a): Chlorophyll Fluorescence and Yield Responses of Winter Wheat to Waterlogging at Different Growth Stages. Plant Production Science 18, 284–294. https://doi.org/10.1626/pps.18.284

WU, Y.Q. – LI, C.S. – FAN, G.Q. – WU, X.L. – TANG, Y.L. (2015b): Effect of waterlogging on physical traits and yield of wheat in Sichuan, China. Chinese Journal of Applied Ecology 26, 1162–1170.

YANG, Z. – CAI, L. – HAN, L. – FAN, X. – LIU, X. (2021): Review of standards for near infrared spectroscopy methods. Journal of Near Infrared Spectroscopy 29, 313–320. https://doi.org/10.1177/09670335211042016

YU, F. – ZHANG, C. – WANG, W. – ZHANG, L. – WANG, Y. – HUANG, Y. – ZHANG, Y. (2025): Effect of Stem Elongation Waterlogging on Wheat Grain Yield, Grain Traits, and Quality of Chinese Southern-Type Steamed Bread. Agriculture 15, 459. https://doi.org/10.3390/agriculture15050459

Published

2025-11-28

Issue

Section

Cikk szövege

How to Cite

Kerezsi, G., Waltner, I., & Géczi, G. (2025). The Effect of Seasonal Groundwater Level Rise on the Zeleny Value of Winter Wheat. Journal of Central European Green Innovation, 13(1), 65-90. https://doi.org/10.33038/jcegi.7316