Study on the Physiological Characteristics of Sunflower Treated With Bacterial Fertilizer
DOI:
https://doi.org/10.33038/jcegi.7334Keywords:
plant conditioner, sunflower, in vivo measurements, SPAD-value, vegetation indicesAbstract
In 2019, in the experimental area on Kompolt, we tested the effect of Mikro-Vital in sunflower crops in a large-plot experiment using 2 doses (1 l ha-1 and 2 l ha-1). The bacterial fertilizers were applied to the chernozem brown forest soil at sowing. At the beginning of July, before flowering, the relative chlorophyll content of the leaves was measured in vivo with field instruments (portable spectroradiometer and SPAD) and spectral vegetation indices were determined, which, in addition to photosynthetic processes, allow us to infer the stress tolerance of the plants and the nitrogen and water content of the leaves. These parameters are the most important determinants of fertility. We also measured the average yield at harvest. In the year of the study, weather conditions were not ideal for sunflower development. The minimal rainfall in spring resulted in poor crop development after sowing. Chlorophyll vegetation indices also indicated a significant positive effect of the bacterial fertilizer treatment, and photochemical activity (PRI), leaf water content (PWI) were higher compared to the control plots. In the control treatment, stress sensitivity (SIPI) and the amount of protective pigments (CRI, ARI) were higher. Water shortages also occurred at flowering, resulting in a medium average yield for all plots, which was lower than the average of Heves County, Northern Hungary and the country. Based on our tests, a treatment of 1 l ha-1 is considered optimal.
References
GABRIEL J.L. – ZARCO-TEJADA P.J. – LOPEZ-HERRERA P.J. – PEREZ-MARTÍN E. – ALONSO-AYUSO M. – QUEMADA M. (2017): Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystem Engineering 160: 124–133. https://doi.org/10.1016/j.biosystemseng.2017.06.003
GAMON J.A. – SERRANO L. – SURFUS J.S. (1997): The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112., 492–499. http://dx.doi.org/10.1007/s004420050337
GITELSON A.A. – MERZLYAK M.N. (2004): Non-destructive Assessment of Chlorophyll Carotenoid and Anthocyanin Content in Higher Plant Leaves: Principles and Algorithms. Papers in Natural Resources. 263. http://digitalcommons.unl.edu/natrespapers/263
GRACIA-ROMERO A. – KEFAUVER S.C. – VERGARA-DÍAZ O. – ZAMAN-ALLAH M.A. – PRASANNA B.M. – CAIRNS J.E. – ARAUS J.L. (2017): Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Front. Plant Sci. 8, 2004. https://doi.org/10.3389/fpls.2017.02004
HUETE A. – DIDAN K. – MIURA T. (2002): Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 1–2, September 2002, 195–213.
HOLLÓ S. – PETHES J. – AMBRUS A. (2009): A tartós szerves és műtrágyázás hatása a talaj könnyen oldható foszfortartalmára Kompolton, csernozjom barna erdőtalajon/. Effects of permanent use of organic and mineral fertilizers on easily soluble P content of Chernozem brown forest soil in Kompolt. (In Hungarian) Tartamkísérletek jelentősége a növénytermesztés fejlesztésében. Jubileumi tudományos konferencia. Martonvásár, 2009. október 15., 227–234.
HUANG J. – WANG X. – LI X. – TIAN H. – PAN Z. (2013): Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. Plos One, 8(8). https://doi.org/10.1371/journal.pone.0070816
KANDEL B. P. (2020): Spad value varies with age and leaf of maize plant and its relationship with grain yiald. BMC Research Notes 13, Article number: 475 (2020). https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-020-05324-7
KAPRINYÁK T. – LÁPOSI R. – BEKŐ L. – TÓTH S. (2018): Effects of combined nutrient supply treatments on some physiological parameters of autumn wheat. Acta Agraria Debreceniensis, (150), 241–251. https://doi.org/10.34101/actaagrar/150/1720
LÁPOSI R. – BEKŐ L. – KAPRINYÁK T. – MOLJÁK S. – TÓTH SZ. ZS. (2020): Evaluation of soil bacteria treatments on some physiological parameters of crops by spectral vegetation indices. Ecocycles, 6(1), 134–145. https://doi.org/10.19040/ecocycles.v6i1.167
PEÑUELAS J. – BARET F. – FILELLA I. (1995): Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31(2), 221–230. https://www.researchgate.net/publication/229084513
PEPÓ P (2019): Integrált növénytermesztés 2. Alapnövények. Mezőgazda Lap- és Könyvkiadó. Pages 151–178.
ROUJEAN J-L. – BREON, F-M. (1995): Estimating PAR Absorbed by Vegetation from Bi-Directional Reflectance Measurements. Remote Sensing of Environment, 51, 375–384. http://dx.doi.org/10.1016/0034-4257(94)00114-3
TÓTH N. (2011): Effects of environmental factors on brewing characteristics of malting barley and malt (In Hungarian). PhD Thesis, Szent Istvan Egyetem. Godollo https://szie.hu/file/tti/archivum/Toth_Nikolett_ertekezes.pdf
TURY R. – TÓTH Sz. – LEHOCZKY É. – LÁPOSI R (2023): Investigation of the Physiological Effects of Plant Conditioners in Field Experiments of Winter Wheat. JOURNAL OF CENTRAL EUROPEAN GREEN INNOVATION 11(1), 3–14., 12 p.
Vogelmann J. – Mass D. (1993): Spectral reflextance measurments in the genus Sphagnum. Remote Sensing of Environment. Volume 45, Issue 3, September 1993, Pages 273–279.
ZARCO-TEJADA P.J. – USTIN S.L. – WHITTING M.L. (2005): Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery. Agronomy Journal, 97(3), 641–653. https://doi.org/10.2134/agronj2003.0257
http 1: https://www.ksh.hu/docs/hun/xftp/stattukor/fobbnoveny/2019/index.html
Letöltés dátuma: 2025. október
http2:https://www.ksh.hu/docs/hun/xftp/stattukor/fobbnoveny/2019/index.html#haznkakukoricasnapraforgtermesztsbenjrlenazuniban Letöltés dátuma: 2025. október
http 3: https://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_omn018b.html
Letöltés dátuma: 2025. október
http 4: https://pmc.ncbi.nlm.nih.gov/articles/PMC243341/ Letöltés dátuma: 2025. október
Website 5: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/azospirillum-brasilense Letöltés dátuma: 2025. október
http 6: https://www.researchgate.net/publication/320966369_Azospirillum_brasilense_a_Beneficial_Soil_Bacterium_Isolation_and_Cultivation_Azospirillum_brasilense_Isolation_and_Cultivation Letöltés dátuma: 2025. október
http 7: https://mikro-vital.hu/wp-content/uploads/2025/06/MikroVital-prospektus-B5_fekvo_20oldal_HUN_oldalankent.pdf Letöltés dátuma: 2025. október
http 8: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/azospirillum-brasilense Letöltés dátuma: 2025. október
http 9: https://mikro-vital.hu/wp-content/uploads/2025/06/MikroVital-prospektus-B5_fekvo_20oldal_HUN_oldalankent.pdf Letöltés dátuma: 2025. október
http 10: https://bactotech.co.uk/azotobacter-vinelandii/ Letöltés dátuma: 2025. október
http 11: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/azotobacter-vinelandii Letöltés dátuma: 2025. október
http 12: https://api.lidea-seeds.hu/uploads/2024/11/napraforgo_es_emeric_ho_clp_2024.pdf Letöltés dátuma: 2025. október
http 13: https://agraragazat.hu/hir/lg-clearfield-plus-napraforgo-hibridek-a-genetikai-plusz/ Letöltés dátuma: 2025. október
http 14: https://www.yara.hu/tapanyagellatas/napraforgo/napraforgo-eghajlatigenye/ Letöltés dátuma: 2025. október
http 15: https://www.met.hu/ismeret-tar/erdekessegek_tanulmanyok/index.php?id=2727 Letöltés dátuma: 2025. október
http 16: https://webshop.mikro-vital.hu/termekek/mikro-vital/ Letöltés dátuma: 2025. október
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Central European Green Innovation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.