The Effect of Plant Conditioners on Some Physiological Parameters of Maize in a Drought Year
DOI:
https://doi.org/10.33038/jcegi.6365Kulcsszavak:
drought, maize, physiological parameters, plant conditioners, amino acids, zinkAbsztrakt
At Kompolt, since 2015 we have been testing environmentally friendly nutrient supply methods for arable crops. The utilisation of the nutrients depends on the amount and distribution of rainfall during the growing season. In 2022, there was an extreme drought in Hungary, with rainfall from May to September 60-80% below the 40-year average, which resulted in failures of maize yield in many parts of the country. In the given year, we set up experiments with 3 different plant conditioners (1. amino acids, 2. P+Zn+K+Mo, 3. ion Zn) on maize cultivars and measured some photosynthetic parameters with different plant sensors, moreover the yield and corncob parameters at harvest. The SPAD index and spectral vegetation indices, which determine some physiological features, showed a positive effect of all three treatments at the beginning of flowering. Yield were 155 and 159% higher in the first two treatments and 144% higher in treatment 3 compared to the control. Based on corncob parameters, all three treatments showed significantly better results than the control. The largest difference was measured for treatment 2, based on all parameters tested, where foliar fertilizers supplemented with macro- and micro elements in addition to amino acids. Overall, plant conditioners applied at the right time can reduce the effects of environmental stress on plants, and the sensors used can monitor the effects of treatments throughout the growing season.
Hivatkozások
AMPONG, K.; PENN, C.J.; CAMBERATO, J.J. (2024): The Timing of Phosphorus Availability to Corn: What Growth Stages Are Most Critical for Maximizing Yield? Agronomy 14, 2731. https://doi.org/10.3390/agronomy14112731
FLORES M. DA S, PASCHOALETE W.M., BAIO F.H.R., CAMPOS C.N.S., PANTALEÃO A. DE A., RIBEIRO TEODORO L.P., SILVA JÚNIOR C.A. DA. AND TEODORO P.E. (2020): Relationship between vegetation indices and agronomic performance of maize varieties under different nitrogen rates. Bioscience Journal [online], vol. 36, no. 5, pp. 1638–1644. https://doi.org/10.14393/BJ-v36n5a2020-47993; Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/47993.
GABRIEL J.L., ZARCO-TEJADA P.J., LOPEZ-HERRERA P.J., PEREZ-MARTÍN E., ALONSO-AYUSO M., QUEMADA M. (2017): Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystem Engineering 160: 124-133. https://doi.org/10.1016/j.biosystemseng.2017.06.003
GAMON J.A., SERRANO L., SURFUS J.S. (1997): The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492-499. http://dx.doi.org/10.1007/s004420050337
GITELSON A.A., MERZLYAK M.N. (2004): Non-destructive Assessment of Chlorophyll Carotenoid and Anthocyanin Content in Higher Plant Leaves: Principles and Algorithms. Papers in Natural Resources. 263. http://digitalcommons.unl.edu/natrespapers/263
GRAY S.B., BRADY S.M. (2016): Plant developmental responses of climate change. Developmental Biology Vol. 419. Issue 1.64-77. https://doi.org/10.1016/j.ydbio.2016.07.023
HOLLÓ S., PETHES J., AMBRUS A. (2009): A tartós szerves és műtrágyázás hatása a talaj könnyen oldható foszfortartalmára Kompolton, csernozjom barna erdőtalajon/. Effects of permanent use of organic and mineral fertilizers on easily soluble P content of Chernozem brown forest soil in Kompolt. (In Hungarian) Tartamkísérletek jelentősége a növénytermesztés fejlesztésében. Jubileumi tudományos konferencia. Martonvásár, 2009. október 15. 227-234.
HUANG J., WANG X., LI X., TIAN H., & PAN Z. (2013): Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. Plos One, 8(8). https://doi.org/10.1371/journal.pone.0070816
KAPRINYÁK T., LÁPOSI R., BEKŐ L., TÓTH SZ. Effetcs of combined nutrient supply treatments on some physiological parameters of autumn wheat. Acta Agraris Debreceniensis 241-251. https://doi.org/10.34101/actaagrar/150/1720
KUMMERER K., HELD M., PIMENTEL D. (2010) Sustainable use of soils and time. Journal of soil and water conservation. 65 (2): 141-149. https://doi.org/10.2489/jswc.65.2.141
LÁPOSI R., BEKŐ L., KAPRINYÁK T., MOLJÁK S., TÓTH SZ. ZS. (2020): Evaluation of soil bacteria treatments on some physiological parameters of crops by spectral vegetaion indices. Ecocycles, 6:1 pp. 134-145. https://doi.org/10.19040/ecocycles.v6i1.167
LYKHOVYD P.V. - SHARII V. O. (2024): Normalised difference moisture index in water stress assessment of maize crops. Agrology, 7(1), 21–26. https://doi.org/10.32819/202403
MIRANSARI M. (2013): Soil microbes and the availability of soil nutrients. Acta Physiologiae Plantarum 35: 3075-3084. https://doi.org/10.1007/s11738-013-1338-2
PABAR S.A., KOTROCZÓ ZS., TAKÁCS T., BIRÓ B. (2024): Evaluation the Efficacy of Selected Plant Growth-Promoting Microorganisms in Optimizing Plant Growth and Soils Health in Diverse Soil Types. Agriculture 14(9): 1586 https://doi.org/10.3390/agriculture14091586
PEÑUELAS J., BARET F., FILELLA I. (1995): Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31(2): 221-230. https://www.researchgate.net/publication/229084513
PIETRINI F. IANNELLI M. A. & MASSACCI A. (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell and Environment (2002) 25, 1251–1259. https://doi.org/10.1046/j.1365-3040.2002.00917.x
PUPPE D. – SOMMER M. (2018) Chapter One – Experiments, Uptake Mechanisms and Functioning of Silicon Foliar Fertilization – A Review Focusing on Maize, Rice and Wheat. Advances in Agronomy 152: 1-49. https://doi.org/10.1016/bs.agron.2018.07.003
RAHMAN S. AND MESEV V. (2019) Change Vector Analysis, Tasseled Cap, and NDVI-NDMI for Measuring Land Use/Cover Changes Caused by a Sudden Short-Term Severe Drought: 2011 Texas Event. Remote Sens. 2019, 11(19), 2217; https://doi.org/10.3390/rs11192217
SERRANO, L., USTIN, S. L., ROBERTS, D. A., GAMON, J. A., & PEÑUELAS, J. (2000): Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ., 74, 570– 581. http://dx.doi.org/10.1016/S0034-4257(00)00147-4
SULTANA S.R., ALI A., AHMAD A., MUBEEN M., ZIA-UL-HAQ M., AHMAD S., ERCISLI S., JAAFAR H.Z.E. (2014): Normalized Difference Vegetation Index as a Tool for Wheat Yield Faisalabad, Pakistan. Hindawi Publishing Corporation The Scientific World Journal, Volume 2014, Article ID 725326, 8 pages, https://onlinelibrary.wiley.com/doi/10.1155/2014/725326
TEVINI M., IWANZIK M.W., THOMA U. (1981): Some effects of enhanced UV-B radiation on the growth and pigment composition of plants. Planta, 153: 388-394. https://doi.org/10.1016/S0044-328X(83)80127-5
TÓTH E., CSAMBALIK L., BIRÓ B., GERE A., KOREN D., KOTROCZÓ ZS., SZALAI Z. (2024) Are the Nutritional Properties of Organic Tomatoes Altered by Single and Combined Microbial Soil Inoculants? A Multiperspective Approach. Journal of Plant Growth Regulation 43: 3718-3728. https://doi.org/10.1007/s00344-024-11358-z
TÓTH N. (2011): Effects of environmental factors on brewing characteristics of malting barley and malt (In Hungarian). PhD Thesis, Szent Istvan Egyetem. Gödöllő
https://szie.hu/file/tti/archivum/Toth_Nikolett_ertekezes.pdf
TURY R., TÓTH SZ. ZS., LEHOCZKY É., LÁPOSI R. (2023): Investigation of the physiological effects of plant conditioners in field experiments of winter wheat. Journal of Central European Green Innovation. 11(1): 3-14. https://doi.org/10.33038/jcegi.4489
YOUNG A. AND BRITTON G. (1990): Carotenoids and stress. In Stress Responses in Plants: Adaptation and Acclimation Mechanisms (ed. Alscher R.G. and Cumming J.R.), pp. 87-112. Wiley-Liss, New York
WU C., NIU Z., TANG Q., HUANG W. (2008): Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology 148: 1230-1241. https://doi.org/10.1016/j.agrformet.2008.03.005
ZARCO-TEJADA, P. J., & USTIN, S. L. (2001): Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites. International Geoscience and Remote Sensing Symposium, 2001. IGARSS ’01, Vol. 1 (pp. 342–344). https://doi.org/10.1109/IGARSS.2001.976152
ZARCO-TEJADA P.J., USTIN S.L., WHITTING M.L. (2005): Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery. Agronomy Journal, 97(3): 641-653. https://doi.org/10.2134/agronj2003.0257
Website 1: https://www.agroinform.hu/szantofold/kukorica-barometer-mikor-es-hogyan-erik-a-kukorica-40933-001 Letöltés dátuma: 2024. 08. 22.
Website 2: https://hedland.hu/?fbclid=IwZXh0bgNhZW0CMTAAAR1cRMh99vMuuwbT1V3hfPKbUsbqrS6ESFn58XVG-KkEvbhWaEL6MU5GsVg_aem_f2a9ibdqY9PUuqVoWN4MbA Letöltés dátuma: 2024. 09. 02.
Website 3: https://www.ksh.hu/s/kiadvanyok/fobb-novenykulturak-termeseredmenyei-2022/index.html Letöltés dátuma: 2024. 08. 31.
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2024 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.