Talajkímélő művelés hatása a földigilisztákra egy Zala megyei tartamkísérletben

Szerzők

  • Madarász Balázs Research Centre for Astronomy and Earth Sciences, Geographical Institute https://orcid.org/0000-0003-4201-6919
  • Benke Szabolcs Research Centre for Astronomy and Earth Sciences, Geographical Institute

DOI:

https://doi.org/10.33038/jcegi.4855

Kulcsszavak:

talajkímélő művelés, csökkentett művelés, forgatás nélküli talajművelés, takarónövény, tartamkísérlet

Absztrakt

A hagyományos, szántásos talajművelés jelentős talajdegradációval jár. Növekszik az erózió, miközben csökken a talajok szervesanyagtartalma és romlanak a talaj élővilágának életfeltételei. A forgatás nélküli, talajkímélő művelésű rendszerek a kisebb zavarás, több szervesanyag és magasabb nedvességtartalomnak köszönhetően többnyire jobb körülményeket biztosítanak a talajfauna számára. Tanulmányunkban azt vizsgáljuk, hogy milyen hatása van egy 18 éves talajkímélő művelésű terület a földigiliszták egyedszámára és biomassza tömegére. Vizsgálatainkat Dióskál település határában 10 parcellapáron 90 ha-on végeztük. A mintákat az átállást követő első 3 évben (2004–2006), illetve a 2019–2021 közötti 3 évben, tavasszal és ősszel vettük egy 10 cm átmérőjű és ugyanekkora magasságú talajszaggatóval. Eredményeink azt mutatják, hogy a földigiliszták egyedszáma az átállást követően gyorsan megnő, felszaporodásuk robbanásszerű. Azonban számuk az évek elteltével nem növekszik, de egyedszámuk és biomassza tömegük szignifikánsan magasabb a vizsgálat minden periódusában a talajkímélő művelésű területeken.

Szerző életrajzok

  • Madarász Balázs, Research Centre for Astronomy and Earth Sciences, Geographical Institute

    Dr. Balázs Madarász, PhD
    senior research fellow, associate professor
    Geographical Institute, Research Centre for Astronomy and Earth Sciences, MKH, Budapest, Budaörsi út 45, H-1112, Hungary
    CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17., H-1121, Hungary
    Department of Agro-Environmental Studies, Insitute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Villányi út 29–43, H-1118, Hungary
    madarasz.balazs@csfk.org

  • Benke Szabolcs, Research Centre for Astronomy and Earth Sciences, Geographical Institute

    Szabolcs Benke
    agricultural engineer
    Geographical Institute, Research Centre for Astronomy and Earth Sciences, MKH, Budapest, Budaörsi út 45, H-1112, Hungary
    CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17., H-1121, Hungary
    benke.szabolcs@csfk.org

Hivatkozások

BÁDONYI K. – HEGYI G. – BENKE S. – MADARÁSZ B. – KERTÉSZ Á. (2008): Talajművelési módok agroökológiai összehasonlító vizsgálata. Tájökológiai Lapok 6, 145–163.

BIRKÁS M. (Ed.) (2001): Talajművelés a fenntartható gazdálkodásban. Gödöllő, SZIE, Mezőgazdasági és Környezettudományi Kar. 292 p.

BIRKÁS M. (2002): Környezetkímélő és energiatakarékos talajművelés. Budapest, Akaprint Nyomdaipari Kft.

BIRKÁS, M. – JOLÁNKAI, M. – GYURICZA, C. – PERCZE, A. (2004): Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res. 78, 185–196. https://doi.org/10.1016/j.still.2004.02.006

BÁLDI A. (2005): Az agrár-környezetvédelmi programok ökológiai kutatásának szükségességéről. A Falu 20, 61–65.

CENTERI, C. – SALÁTA, D. – SZILÁGYI, A. – OROSZ, G. – CZÓBEL, S. – GRÓNÁS, V. – GYULAI, F. – KOVÁCS, E. – PETŐ, Á. – SKUTAI, J. et al. (2021): Selected Good Practices in the Hungarian Agricultural Heritage. Sustainaability 13, 6676. https://doi.org/10.3390/su13126676

CHAN, K.Y. (2001): An overview of some tillage impacts on earthworm population abundance and diversity – implications for functioning in soils. Soil Tillage Res. 57, 179–191. https://doi.org/10.1016/S0167-1987(00)00173-2

DARWIN, C. (1840): On the formation of mould. Tranc. Geol. Soc., London, 5. 505–509. https://doi.org/10.1144/transgslb.5.3.505

DEKEMATI, I. – SIMON, B. – VINOGRADOV, S. – BIRKÁS, M. (2019): The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Res. 194, 104334. https://doi.org/10.1016/j.still.2019.104334

EMMERLING, C. (2001): Response of earthworm communities to different types of soil tillage. Applied Soil Ecology 17, 91–96. https://doi.org/10.1016/S0929-1393(00)00132-3

FIELD, R.H. – BENKE, S. – BÁDONYI, K. – BRADBURY, R.B. (2007): Influence of conservation tillage on winter bird use of arable fields in Hungary. Agric. Ecosys. Environ. 120, 399–404. https://doi.org/10.1016/j.agee.2006.10.014

HARPER ADAMS UNIVERSITY COLLEGE (2003): Earthworm Soil Core Standard Operating Procedure. Newport UK, Crop and Environment Research Centre. 4 p.

JUHOS, K. – MADARÁSZ, B. (2016): Interpretation and integration of pedological data in land evaluation systems. Bulgarian J. of Agricultural Sci. 22, 209–215.

JUHOS, K. – NUGROHO, P.A. – JAKAB, G. – PRETTL, N. – KOTROCZÓ, ZS. – SZIGETI, N. – SZALAI, Z. – MADARÁSZ, B. (2023): A comprehensive analysis of soil health indicators in a long-term conservation tillage experiment. Soil use and Management, https://doi.org/10.1111/sum.12942

KASSAM, A. – BASCH, G. – FRIEDRICH, T. – GONZALEZ, E. – TRIVINO, P. – MKOMWA, S. (2017): Mobilizing greater crop and land potentials sustainably. Hun. Geogr. Bull. 66, 3–11. https://doi.org/10.15201/hungeobull.66.1.1

KASSAM, A. – FRIEDRICH, T. – DERPSCH, R. (2019): Global spread of conservation agriculture. Int. J. Environ. Stud. 76, 29–51. https://doi.org/10.1080/00207233.2018.1494927

KASZA, G. – BÓDI, B. – SÁRKÖZI, E. – MÁZSA, Á. – KARDOS, L. (2015): Vermicomposting of sewage sludge – Experiences of a laboratory study. Int. J. of Bioscience, Biochemistry and Bioinformatics 5, 1–10. https://doi.org/10.17706/ijbbb.2015.5.1.1-10

KELLER, B. – SZABÓ, J. – CENTERI, C. – JAKAB, G. – SZALAI, Z. (2019): Different land-use intensities and their susceptibility to soil erosion. Agokémia és Talajtan 68, 14–23. https://doi.org/10.1556/0088.2018.00004

KERTÉSZ, Á. – BÁDONYI, K. – MADARÁSZ, B. – CSEPINSZKY, B. (2007): Environmental aspects of conventional and conservation tillage. In: GODDARD, T. – ZOEBISCH, M. – GAN, Y. – ELLIS, W. – WATSON, A. – SOMBATPANIT, S. (Eds.), No-till Farming Systems. Bangkok, World Association of Soil and Water Conservation. pp. 313–329.

KOVÁCS, B. – DOBOLY, C. – SEBŐK, F. – KOCSIS, L. (2020): Effect of vineyard floor management on seasonal changes of cultivable fungal diversity in the rhizosphere. Agriculture 10, 534. https://doi.org/10.3390/agriculture10110534

KOTROCZÓ, Z. – FEKETE, I. (2020): Significance of soil respiration from biological activity in the degradation processes of different types of organic matter. DRC Sustainable Future: Journal of Environment, Agriculture and Energy 1, 171–179. https://doi.org/10.37281/DRCSF/1.2.10

KOTROCZÓ, Z. – KOCSIS, T. – JUHOS, K. – HALÁSZ, J. – FEKETE, I. (2022): How Does Long-Term Organic Matter Treatment Affect the Biological Activity of a Centre European Forest Soil? Agronomy 12, 2301. https://doi.org/10.3390/agronomy12102301

KUNTZ, M. – BERNER, A. – GATTINGER, A. – SCHOLBERG, J.M. – MÄDER, P. – PFIFFNER, L. (2013): Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 56, 251–260. https://doi.org/10.1016/j.pedobi.2013.08.005

MADARÁSZ, B. – JUHOS, K. – RUSZKICZAY-RÜDIGER, Z. – BENKE, S. – JAKAB, G. – SZALAI, Z. (2016): Conservation tillage vs. conventional tillage: long-term effects on yields in continental, sub-humid Central Europe, Hungary. Int. J. of Agric. Sustainability 14, 408–427. https://doi.org/10.1080/14735903.2016.1150022

MADARÁSZ, B. – JAKAB, G. – SZALAI, Z. – JUHOS, K. – KOTROCZÓ, ZS. – TÓTH, A. – LADÁNYI, M. (2021): Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil and Tillage Res. 209, 104959. https://doi.org/10.1016/j.still.2021.104959

MASOUDI, M. – CENTERI, C. – KARLIK, M. – JAKAB, G. (2023): Extracted samples and in situ soil investigations to assess the effects of different land use and tillage management practices on soil organic matter composition. Land Degradation & Development 34, 2560–2572. https://doi.org/10.1002/ldr.4629

RIEDER, Á. – MADARÁSZ, B. – SZABÓ, J.A. – ZACHÁRY, D. – VANCSIK, A. – RINGER, M. – SZALAI, Z. – JAKAB, G. (2018): Soil organic matter alteration velocity due to land-use change: a case study under conservation agriculture. Sustainability 10, 943. https://doi.org/10.3390/su10040943

ROARTY, S. – HACKETT, R.A. – SCHMIDT, O. (2017): Earthworm populations in twelve cover crop and weed management combinations. Appl. Soil Ecology 114. 142–151. https://doi.org/10.1016/j.apsoil.2017.02.001

SZABÓ M. – BARCZI A. – TURCSÁNYI G. (2001): A környezet állapota és használatának néhány szempontja Magyarországon. In: ÁNGYÁN J. – PODMANICZKY L. – SZABÓ M. – VAJNÁNÉ MADARASSY A. (Eds.) Az Érzékeny Természeti Területek (ÉTT) rendszere. Tanulmányok Magyarország és az Európai Unió természetvédelméről. TEMPUS Institutional Building Joint European Project. ELTE-TTK, SZIE-KGI, KöM-TvH, Budapest-Gödöllő-Berlin-Madrid-Thessaloniki. pp. 19–87.

WRB (2014). World Reference Base for Soil Resources 2014. FAO, Rome

Letöltések

Megjelent

2023-10-17

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Talajkímélő művelés hatása a földigilisztákra egy Zala megyei tartamkísérletben. (2023). Journal of Central European Green Innovation, 11(2), 86-92. https://doi.org/10.33038/jcegi.4855