Intraspecifikus facilitáció a tápnövényminőség feljavítása útján? Megfigyelések a szeneszcencia indukáló karcsú nádibodobács Ischnodemus sabuleti aggregációiról és populációbiológiájáról

Szerzők

  • Gidó Zsolt Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences
  • Lehoczky Éva Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences

DOI:

https://doi.org/10.33038/jcegi.4529

Kulcsszavak:

Ischnodemus sabuleti, Heteroptera, Blissidae, Glyceria maxima, intraspecifikus facilitáció, aggregáció

Absztrakt

Megfigyeltük a közönséges karcsúbodobács (Ischnodemus sabuleti) aggregációképzését és szeneszcencia-kiváltó hatását a tápnövényen (Glyceria spp.) néhány nagy sűrűségű magyarországi populációjában. Megfogalmazzuk és részletesen tárgyaljuk a tápnövényminőségfeljavítása révén megvalósuló intraspecifikus facilitáció hipotézisét. Feltételezzük, hogy a szárazságstressznek kitett tápnövény növeli az I. sabuleti életképességét és elősegíti a helyi gradációkat. Felvetjük, hogy szemben a friss hajtásokra specializálódott növényevőkkel, a magas aszálystressznek kitett tápnövények előnyösebbek a szeneszcencia-kedvelő növényevők számára.

Szerző életrajzok

  • Gidó Zsolt, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences

    Dr. Zsolt Gidó, PhD
    Assistant professor
    Department of Environmental Sustainability, Institute of Environmental Sciences,
    Hungarian University of Agriculture and Life Sciences
    H-8360, Keszthely, Deák Ferenc utca 16.
    gido.zsolt@uni-mate.hu

  • Lehoczky Éva, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences

    Dr. Éva Lehoczky, PhD, DSc
    Professor
    Department of Environmental Sustainability, Institute of Environmental Sciences,
    Hungarian University of Agriculture and Life Sciences
    H-8360, Keszthely, Deák Ferenc utca 16.
    Lehoczky.Eva@uni-mate.hu

Hivatkozások

ADDESSO, K. M. – MCAUSLANE, H. J. – CHERRY, R. (2012): Aggregation behaviour of the Southern chinch bug (Hemiptera: Blissidae), Environmental Entomology, 41, 887–895. DOI: https://doi.org/10.1603/EN11145

BACKUS, E. A. (1988): Sensory systems and behaviours which mediate hemipteran plant-feeding: A taxonomic overview, Journal of Insect Physiology, 34, 151–165. DOI: https://doi.org/10.1016/0022-1910(88)90045-5

BACKUS, E. A. – RANGASAMY, M. – STAMM, M. – MCAUSLANE, H.J. – CHERRY, R. (2013): Waveform library for chinch bugs (Hemiptera: Heteroptera: Blissidae): Characterization of electrical penetration graph waveforms at multiple input impedances. Annals of the Entomological Society of America, 106: 524–539. https://doi.org/10.1603/AN13015

BANFIELD-ZANIN, J. – LEATHER, S. (2015): Drought intensity and frequency have contrasting effects on development time and survival of the green spruce aphid. Agricultural and Forest Entomology, 17, 309–316. https://doi.org/17.10.1111/afe.12109.

CAO, H. H, – LIU, H. R. – ZHANG, Z. F. – LIU, T. X. (2016): The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Scientific Reports, 6, 21954. https://doi.org/10.1038/srep21954

CHALKER-SCOTT, L. (1999): Environmental Significance of Anthocyanins in Plant Stress Responses. Photochemistry and Photobiology, 70, 1–9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x

CHERRY, R. (2001): Spatial distribution of southern chinch bugs (Hemiptera, Lygaeidae) in St. Augustinegrass. The Florida Entomologist, 84, 151–153. https://doi.org/10.2307/3496677

CHERRY, R. - WRIGHT, A. – LU, H. & LUO, Y. – ARTHURS, S. (2013): Morphological and nutrient changes in St. Augustinegrass caused by Southern chinch bug (Hemiptera: Blissidae) feeding damage. Journal of Entomological Science, 48, 327–331. https://doi.org/10.18474/0749-8004-48.4.327

CLIFTON, E.H. – JARONSKI, S.T. – COATES, B. S. – HODGSON, E.W. – GASSMANN, A. J. (2018): Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS One. 2018 Mar 22;13, e0194815. https://doi.org/10.1371/journal.pone.0194815.

COCKFIELD, S.D. – POTTER, D.A. – HOUTZ, R.L. (1987): Chlorosis and reduced CO2 assimilation of Euonymus fortunei infested with euonymus scale (Homoptera: Diaspididae). Environmental Entomology, 16, 1314–1318. https://doi.org/10.1093/ee/16.6.1314

COURCHAMP, F. – GRENFELL, B.T. – CLUTTON-BROCK, T. (1999). Population Dynamics of Obligate Cooperators. Proceedings of the Royal Society B: Biological Sciences. 266. https://doi.org/10.1098/rspb.1999.0672

COTTRELL, T.E. – WOOD, B.W. – NI, X. (2009): Chlorotic feeding injury by the black pecan aphid (Hemiptera: Aphididae) to pecan foliage promotes aphid settling and nymphal development. Environmental Entomology, 38, 411–416. https://doi.org/10.1603/022.038.0214

CRAWFORD, S.A – WILKENS, S (1996): Ultrastructural aspects of damage to leaves of Eucalyptus camaldulensis by the psyllid Cardiaspina retator. Micron, 27, 359–366. https://doi.org/10.1016/S0968-4328(96)00036-4

DILLWITH, J.W. – BERBERET, R.C. – BERGMAN, D.K. – NEESE, P.A. – EDWARDS, R.M. – MCNEW, R.W. (1991): Plant biochemistry and aphid populations: Studies on the spotted alfalfa aphid, Therioaphis maculata. Archives of Insect Biochemistry and Physiology, 17, 235–251. https://doi.org/10.1002/arch.940170407

DORSCHNER, K.W. – RYAN, J. D. – JOHNSON, R.C – EIKENBARY, R. D. (1987): Modification of host nitrogen levels by the greenbug (Homoptera: Aphididae): its role in resistance of winter wheat to aphids. Environmental Entomology, 16, 1007–1011. https://doi.org/10.1093/ee/16.4.1007

ELZINGA, D.A. – JANDER, G. (2013): The role of protein effectors in plant-aphid interactions. Current Opinion in Plant Biology, 16, 451–456. https://doi.org/10.1016/j.pbi.2013.06.018

FISCHER, M. (1987): The effect of previously infested spruce needles on the growth of the green spruce aphid, Elatobium abietinum, and the effect of the aphid on the amino acid balance of the host plant. Annals of Applied Biology, 111, 33–41. https://doi.org/10.1111/j.1744-7348.1987.tb01430.x

FUCARINO, A. – MILLAR, J.G. – MCELFRESH, J.S. – COLAZZA, S. (2004): Chemical and physical signals mediating conspecific and heterospecific aggregation behavior of first instar stink bugs. Journal of Chemical Ecology 30, 1257–1269. https://doi.org/10.1023/B:JOEC.0000030276.32665.cb

FUJISAKI, K. (1989): Wing form determination and sensitivity of stages to environmental factors in the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera : Lygaeidae). Applied Entomology and Zoology, 24, 287–294. https://doi.org/10.1303/aez.24.287

GELY, C. – LAURANCE, S.G.W. – STORK, N.E. (2020):, How do herbivorous insects respond to drought stress in trees? Biological Reviews, 95, 434–448. https://doi.org/10.1111/brv.12571

GIDÓ, ZS. (2022): Range expansion and invasive capacity of the wing di- and polymorphic insects: a short review. Journal of Central European Green Innovation, 10, 51–62. https://doi.org/10.33038/jcegi.3473

GIDÓ, ZS. (2023a): Wing dimorphism/polymorphism in true bugs (Heteroptera) from a functional viewpoint: a review. Part I: Non-phytophagous species. Journal of Central European Green Innovation, 11, 39–54. https://doi.org/10.33038/jcegi.4491

GIDÓ, ZS. (2023b): Wing dimorphism/polymorphism in true bugs (Hemiptera: Heteroptera) from a functional viewpoint: a review. Part II: Phytophagous species. Journal of Central European Green Innovation, 11(2), 68–85. https://doi.org/10.33038/jcegi.4854

GONZALES, W. – RAMÍREZ, C. – OLEA, N. – NIEMEYER, H. (2002): Host plant changes produced by the aphid Sipha flava: Consequences for aphid feeding behaviour and growth. Entomologia Experimentalis et Applicata, 103, 107–113. https://doi.org/10.1023/A:1020303817697

GRIPENBERG, S. – MAYHEW, P.J. – PARNELL, M. – ROSLIN, T. (2010): A meta-analysis of preference–performance relationships in phytophagous insects. Ecology Letters, 13: 383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x

HALE, B. K. – BALE, J. S. – PRITCHARD, J. – MASTERS, G. J. – BROWN, V. K. (2003): Effects of host plant drought stress on the performance of the bird cherry-oat aphid. Ecological Entomology, 28, 666–677. https://doi.org/10.1111/j.1365-2311.2003.00563.x

HE, Y. – JIANG, W. – DING, W. – CHEN, W. – ZHAO, D. (2022): Effects of PVY-infected tobacco plants on the adaptation of Myzus persicae (Hemiptera: Aphididae). Insects, 13, 1120. https://doi.org/10.3390/insects13121120

HENG-MOSS, T. – BAXENDALE, F. – NOVAK, D. – BOSE, S. – NI, X. – QUISENBERRY, S. (2004): Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus. Journal of Economic Entomology, 97,1086–1095. https://doi.org/10.1093/jee/97.3.1086

HOPMANS, P. – COLLETT, N.C. – SMITH, I.W. – ELMS, S.R. (2008): Growth and nutrition of Pinus radiata in response to fertilization applied after thinning and interaction with defoliation associated with Essigella californica. Forest Ecology and Management, 255, 2118–2128. https://doi.org/10.1016/j.foreco.2007.12.020

HUBERTY, A.F. – DENNO, R.F. (2004): Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85: 1383–1398. https://doi.org/10.1890/03-0352

KAMPS, B.B.J. – POELMAN, E.H. (2023): Adaptations to water gradient in three Rorippa plant species correspond with plant resistance against insect herbivory under drought and waterlogged conditions. Ecological Entomology, 1–9. https://doi.org/10.1111/een.13273

KANSMAN, J.T. – BASU, S. – CASTEEL, C. L. – CROWDER, D.W. – LEE, B. W. – NIHRANZ, C. T. – FINKE, D. L (2022): Plant water stress reduces aphid performance: exploring mechanisms driven by water stress intensity. Frontiers in Ecology and Evolution, 10, https://doi.org/10.3389/fevo.2022.846908

KAPLAN, I. – DENNO, R.F. (2007): Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecology Letters, 10: 977–994. https://doi.org/10.1111/j.1461-0248.2007.01093.x

KERSCH-BECKER, M.F. – THALER, J.S. (2014): Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores. Oecologia, 174, 883–892. https://doi.org/10.1007/s00442-013-2812-7

KHAN, M. A. M. – ULRICHS, C. – MEWIS, I. (2011): Drought stress– impact on glucosinolate profile and performance of phloem feeding cruciferous insects. Acta horticulturae, 917, 111–117. https://doi.org/10.17660/ActaHortic.2011.917.13

KMENT, P. – CUNEV, J. – HEMALA, V. – RĂDAC, I. A. – KONDOROSY, E. (2023): Dimorphopterus blissoides (Hemiptera: Heteroptera: Blissidae): recent spreading of a neonative species in the Pannonian Basin. Zootaxa, 5382 (1): 108–119. https://doi.org/10.11646/zootaxa.5382.1.12

LIN, X. – XU, Y. – JIANG, J. – LAVINE, M. – LAVINE, L. C. (2018): Host quality induces phenotypic plasticity in a wing polyphenic insect. Proceedings of the National Academy of Sciences, 115, 7563–7568. http://dx.doi.org/10.1073/pnas.1721473115

LIU, J. – LIU, Y. – DONKERLEY, P – DONG, Y. – CHEN, X. – ZANG, Y. – XU, P. – REN, G. (2019): Preference of the aphid Myzus persicae (Hemiptera: Aphididae) for tobacco plants at specific stages of potato virus Y infection. Archives of Virology, 164, 1567–1573. https://doi.org/10.1007/s00705-019-04231-y

LOCKWOOD, J. A – STORY, R.N. (1986): Adaptive functions of nymphal aggregation in the Southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Environmental Entomology, 15, 739–749. https://doi.org/10.1093/ee/15.3.739

MODY, K. – EICHENBERGER, D. – DORN, S. (2009): Stress magnitude matters: Different intensities of pulsed water stress produce non-monotonic resistance responses of host plants to insect herbivores. Ecological Entomology, 34, 133–143. https://doi.org/10.1111/j.1365-2311.2008.01053.x

MORATH, S.U. – PRATT, P. D. – SILVERS, C.S. – CENTER, T. D. (2006): Herbivory by Boreioglycaspis melaleucae (Hemiptera: Psyllidae) accelerates foliar senescence and abscission in the invasive tree Melaleuca quinquenervia, Environmental Entomology, 35, 1372–1378, https://doi.org/10.1093/ee/35.5.1372

NALAM, V. – LOUIS, J. – SHAH, J. (2019): Plant defense against aphids, the pest extraordinaire. Plant Science, 279:96–107. https://doi.org/10.1016/j.plantsci.2018.04.027

OKOSUN, O.O. (2012): Chemical ecology and eco-physiology of the grain chinch bug, Macchiademus diplopterus (Distant) (Hemiptera: Lygaeidae: Blissinae), a phytosanitary pest of South African export fruit. MSc Thesis, Stellenbosch University.

OVERHOLT, W. – EWE, S.M.L. – DIAZ, R. – MORGAN, E. – MOERI, O.E. (2004): Feeding effects of Ischnodemus variegatus (Hemiptera: Blissidae) on photosynthesis and growth of Hymenachne amplexicaulis (Poaceae). Florida Entomologist,87, 312–316. https://doi.org/87.312-316.10.1653/0015-4040(2004)087[0312:FEOIVH]2.0.CO;2.

PARRY, W.H. (1979): Summer survival of the green spruce aphid Elatobium abietinum in north-east Scotland, UK. Oecologia 4, 235–244. https://doi.org/10.1007/BF00345005

PEGADARAJU, V. – KNEPPER, C. – REESE, J. – SHAH, J. (2005): Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiology, 139(4):1927–1934. https://doi.org/10.1104/pp.105.070433

PÉRICART, J. (1999): Hémiptères Lygaeidae euro-méditerranéens. Faune de France, 1 84A, i-xx, 1–468.

PUTSKOV, V.G. (1969): Vypusk 2: Ligeïdi. In Fauna Ukraïni, 21, Kiev, 388 pp.

RAMM, C. – WAYANDANDE, A. – BAIRD, L. – NANDAKUMAR R. – MADAYIPUTHIVA N. – AMUNDSEN, K. - DONZE-REINER T. – BAXENDALE, F. – SARATH, G. – HENG-MOSS, T. (2015): Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae). Journal of Economical Entomology, 108, 2055–64. https://doi.org/10.1093/jee/tov149

RANGASAMY, M. – MCAUSLANE, H. – BACKUS, E. – CHERRY, R. (2015): Differential Probing Behavior of Blissus insularis (Hemiptera: Blissidae) on Resistant and Susceptible St. Augustinegrasses. Journal of Economic Entomology, 108, 780–788. https://doi.org/10.1093/jee/tou061

REAGAN, T.E. – AKBAR, W. – SHOWLER, A.T. (2011): A nutritional perspective of sugarcane resistance to stalk borers and sap feeders. International Sugar Journal, 113, 220–223.

REINERT, J. – CHANDRA, A. – ENGELKE, M.C. (2011): Susceptibility of Genera and Cultivars of Turfgrass to Southern Chinch Bug Blissus insularis (Hemiptera: Blissidae). Florida Entomologist, 97, 158–163. https://doi.org/10.1653/024.094.0206.

REITHEL, J. (2009): Effects of aggregation size and host plant on the survival of an ant-tended membracid (Hemiptera: Membracidae): potential roles in selecting for generalized host plant use. Annals of the Entomological Society of America, 101, 70–78. https://doi.org/10.1603/0013-8746(2008)101[70:EOASAH]2.0.CO;2

RICHMOND, D. – SHETLAR, D. (2000): Hairy Chinch Bug (Hemiptera: Lygaeidae) Damage, Population Density, and Movement in Relation to the Incidence of Perennial Ryegrass Infected by Neotyphodium Endophytes. Journal of economic entomology, 93, 1167–1172. https://doi.org/10.1603/0022-0493-93.4.1167

SANDSTRÖM, J. – TELANG, A. – MORAN, N.A, (2000): Nutritional enhancement of host plants by aphids – a comparison of three aphid species on grasses. Journal of Insect Physiology, 46, 33–40. https://doi.org/10.1016/S0022-1910(99)00098-0

SLATER, J. A. (1976): Monocots and chinch bugs: a study of host plant relationships in the lygaeid subfamily Blissinae (Hemiptera: Lygaeidae). Biotropica 8:143–165. https://doi.org/10.2307/2989681

SRINIVASAN, T.S. – ALMAZAN, M.L.P. – BERNAL, C.C. – RAMAL, A.F. (2016): Interactions between nymphs of Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) on resistant and susceptible rice varieties. Applied Entomology and Zoology, 51, 81–90 (2016). https://doi.org/10.1007/s13355-015-0373-4

STEINBAUR, M.J. – BURNS, A.E. – HALL, A. – RIEGLER, M. – TAYLOR, G. S. (2014): Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence? Oecologia, 176, 1061–1074. https://doi.org/10.1007/s00442-014-3087-3

TARIQ, M. – WRIGHT, D. – ROSSIOTER, J. – STALEY, J. (2012): Aphids in a changing world: Testing the plant stress, plant vigour and pulsed stress hypotheses. Agricultural and Forest Entomology, 14. https://doi.org/10.1111/j.1461-9563.2011.00557.x.

TELANG, A. – SANDSTRÖM, J. – DYRESON, E. – MORAN, N.A. (1999): Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomologia Experimentalis et Applicata, 91: 403–412. https://doi.org/10.1046/j.1570-7458.1999.00508.x

TISCHLER, W. (1960): Studien zur Bionomie und Ökologie der Schmalwanze Ischnodemus sabuleti Fall. (Hem., Lygaeidae). Zeitschrift für Wissenschaftliche Zoologie, 163, 168–209.

TISCHLER, W. (1963): Weitere Untersuchungen zur Ökologie der Schmalwanze Ischnodemus sabuleti Fall. (Hem., Lygaeidae). Zoologischer Anzeiger, 171, 339–349. https://eurekamag.com/research/024/131/024131613.php

VARENHORST, A.J. – MCCARVILLE, M.T. – O’NEAL, M.E. (2015): Determining the duration of Aphis glycines (Hemiptera: Aphididae) induced susceptibility effect in soybean. Arthropod-Plant Interactions, 9, 457–464. https://doi.org/10.1007/s11829-015-9395-7

WHITE, T.C.R. (2015): Senescence-feeders: a new trophic sub-guild of insect herbivores. Journal of Applied Entomology, 139: 11–22. https://doi.org/10.1111/jen.12147

ZHANG, Y. – FU, Y. – FAN J. – LI, Q. – FRANCIS, F. – CHEN, J. (2019): Comparative transcriptome and histological analyses of wheat in response to phytotoxic aphid Schizaphis graminum and non-phytotoxic aphid Sitobion avenae feeding. BMC Plant Biology 19, 547 (2019). https://doi.org/10.1186/s12870-019-2148-5

Letöltések

Megjelent

2023-12-11

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Intraspecifikus facilitáció a tápnövényminőség feljavítása útján? Megfigyelések a szeneszcencia indukáló karcsú nádibodobács Ischnodemus sabuleti aggregációiról és populációbiológiájáról. (2023). Journal of Central European Green Innovation, 11(3), 50-69. https://doi.org/10.33038/jcegi.4529