Áttekintés a rizs arzéntartalmának csökkentési lehetőségeiről

Szerzők

  • Szalóki Tímea Magyar Agrár- és Élettudományi Egyetem
  • Székely Árpád Magyar Agrár- és Élettudományi Egyetem
  • Valkovszki Noémi Júlia Magyar Agrár- és Élettudományi Egyetem
  • Tarnawa Ákos Magyar Agrár- és Élettudományi Egyetem
  • Jancsó Mihály Magyar Agrár- és Élettudományi Egyetem

DOI:

https://doi.org/10.33038/jcegi.4492

Kulcsszavak:

arzén, fajtakülönbségek, vízgazdálkodás, ásványi tápanyag alkalmazás

Absztrakt

Az arzén (As) az egyik legmérgezőbb félfém, amely a szennyezett vizekkel és élelmiszerekkel bekerülhet az emberi szervezetbe is, és ott súlyos egészségügyi problémákat okozhat. A gabonafélék között a rizs az egyik, amely a legmagasabb koncentrációban tartalmazhat arzént. Ezért az arzéntartalom csökkentése alapvetően fontos a termelés során. Az arzén felvételének, felhalmozásának és a növényen belüli transzportjának a mechanizmusait számos tudományos publikációban vizsgálták. Az arzén felvételét számos tényező befolyásolja, mint a talajtípus, a pH, az ásványi anyagok mennyisége, a talajok redox tulajdonsága, az arzén kémiai formája és a talajok mikrobiológiai aktivitása. A különböző tápanyagok, mint a foszfor, a vas, a szilícium és a kén hatékonyan szabályozzák az arzén felvételét és felhalmozódását a különböző növényi részekben. Emellett a fajták közötti genetikai különbségek is befolyásolják az arzén beépülését a szemekbe. Az agrotechnikai lépések között a megfelelő vízgazdálkodási gyakorlatok segíthetnek az arzénfelvétel csökkentésében a talaj redox tulajdonságainak szabályozása által. A foszfor és szilícium transzporterek segítségével juthat az arzén a rizs gyökérsejtekbe, ezért az arzén detoxifikáció folyamata nagyban függ ezektől a transzporterektől. Ebben az áttekintésben sorra vesszük az arzén felvételében, felhalmozásában és a rizsnövényen belüli transzportjában szerepet játszó főbb tényezőket. Megvizsgáljuk a különböző talajtulajdonságok és a sejttranszporterek szerepét is. Jelen tanulmányunk alapja lehet az arzénfelvétel csökkentését célzó új kutatási programok kidolgozásának és ezáltal hozzájárulhat a biztonságosabb élelmiszerellátáshoz.

Szerző életrajzok

  • Szalóki Tímea, Magyar Agrár- és Élettudományi Egyetem

    research assistant
    szaloki.timea.palma@uni-mate.hu

  • Székely Árpád, Magyar Agrár- és Élettudományi Egyetem

    research assistant
    szekely.arpad@uni-mate.hu

  • Valkovszki Noémi Júlia, Magyar Agrár- és Élettudományi Egyetem

    research fellow
    valkovszki.noemi.julia@uni-mate.hu

  • Tarnawa Ákos, Magyar Agrár- és Élettudományi Egyetem

    associate professor
    tarnawa.akos@uni-mate.hu

  • Jancsó Mihály, Magyar Agrár- és Élettudományi Egyetem

    research fellow
    jancso.mihaly@uni-mate.hu

Hivatkozások

ABEDIN, M. J. – COTTER-HOWELLS, J. – MEHARG, A. A. (2002a): Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil, 240(2), 311–319. https://doi.org/10.1023/A:1015792723288

ABEDIN, M. J. – CRESSER, M. S. – MEHARG, A. A. – FELDMANN, J. – COTTER-HOWELLS, J. (2002b): Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36(5), 962–968. https://doi.org/10.1021/es0101678

ABEDIN, M. J. – MEHARG, A. A. (2002): Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant and Soil, 243(1), 57–66. https://doi.org/10.1023/A:1019918100451

AHMED, Z. U. – PANAULLAH, G. M. – GAUCH, H., MCCOUCH, S. R. – TYAGI, W. – KABIR, M. S. – DUXBURY, J. M. (2011): Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant and Soil, 338(1), 367–382. https://doi.org/10.1007/s11104-010-0551-7

ALAM, Z. (2005): Accumulation of arsenic in rice plant from arsenic contaminated irrigation water and its effect on nutrient content. 105. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/2424

ARAO, T. – KAWASAKI, A. – BABA, K. – MORI, S. – MATSUMOTO, S. (2009): Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environmental Science & Technology, 43(24), 9361–9367. https://doi.org/10.1021/es9022738

BAKHAT, H. F. – ZIA, Z. – FAHAD, S. – ABBAS, S. – HAMMAD, H. M. – SHAHZAD, A. N. – ABBAS, F. – ALHARBY, H. – SHAHID, M. (2017): Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: a review. Environmental Science and Pollution Research, 24(10), 9142–9158. https://doi.org/10.1007/s11356-017-8462-2

BOUMAN, B. A. M. – LAMPAYAN, R. M. – TOUNG, T.P. (2007): Water Management in Irrigated Rice: Coping with Water Scarcity. Int. Rice Res. Inst.

CHANDRAKAR, V. – NAITHANI, S. C. – KESHAVKANT, S. (2016): Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia, 71(4), 367–377. https://doi.org/10.1515/biolog-2016-0052

CHEN, W. – YAO, X. – CAI, K. – CHEN, J. (2011): Silicon Alleviates Drought Stress of Rice Plants by Improving Plant Water Status, Photosynthesis and Mineral Nutrient Absorption. Biological Trace Element Research, 142(1), 67–76. https://doi.org/10.1007/s12011-010-8742-x

CHEN, X. – LI, H. – CHAN, W. F. – WU, C. – WU, F. – WU, S. – WONG, M. H. (2012): Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere, 89(10), 1248–1254. https://doi.org/10.1016/j.chemosphere.2012.07.054

DIXIT, G. – SINGH, A. P. – KUMAR, A. – MISHRA, S. – DWIVEDI, S. – KUMAR, S. – TRIVEDI, P. K. – PANDEY, V. – TRIPATHI, R. D. (2016): Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiology and Biochemistry, 99, 86–96. https://doi.org/10.1016/j.plaphy.2015.11.005

DUAN, G.-L. – HU, Y. – LIU, W.-J. – KNEER, R. – ZHAO, F.-J. – ZHU, Y.-G. (2011): Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environmental and Experimental Botany, 71(3), 416–421. https://doi.org/10.1016/j.envexpbot.2011.02.016

FAROOQ, M. A. – ISLAM, F. – ALI, B. – NAJEEB, U. – MAO, B. – GILL, R. A. – YAN, G. – SIDDIQUE, K. H. M. – ZHOU, W. (2016): Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42–52. https://doi.org/10.1016/j.envexpbot.2016.08.004

FODOR, L. – SZEGEDI, L. (2015): Behavior of Heavy Metals in the Soil-Plant System. Journal of Central European Green Innovation.3(1), 13–22. https://doi.org/10.22004/ag.econ.199421

GENG, C.-N. – ZHU, Y.-G. – LIU, W.-J. – SMITH, S. E. (2005): Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquatic Botany, 83(4), 321–331. https://doi.org/10.1016/j.aquabot.2005.07.003

GENG, C.-N. – ZHU, Y.-G. – TONG, Y.-P. – SMITH, S. E. – SMITH, F. A. (2006): Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.). Chemosphere, 62(4), 608–615. https://doi.org/10.1016/j.chemosphere.2005.05.045

HU, Z.-Y. – ZHU, Y.-G. – LI, M. – ZHANG, L.-G. – CAO, Z.-H. – SMITH, F. A. (2007): Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environmental Pollution, 147(2), 387–393. https://doi.org/10.1016/j.envpol.2006.06.014

KAMIYA, T. – ISLAM, R. – DUAN, G. – URAGUCHI, S. – FUJIWARA, T. (2013): Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Science and Plant Nutrition, 59(4), 580–590. https://doi.org/10.1080/00380768.2013.804390

KÁDÁR, I. – LEHOCZKY, É. (2008): Néhány gyomfaj elemakkumulációja As és Cd által szennyezett talajon. Növénytermelés, 57 (2.), 113–121.

KHAN, M. A. – STROUD, J. L. – ZHU, Y.-G. – MCGRATH, S. P. – ZHAO, F.-J. (2010): Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environmental Science & Technology, 44(22), 8515–8521. https://doi.org/10.1021/es101952f

LEE, C.-H. – WU, C.-H. – SYU, C.-H. – JIANG, P.-Y. – HUANG, C.-C. – LEE, D.-Y. (2016): Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma, 270, 60–67. https://doi.org/10.1016/j.geoderma.2016.01.003

LI, R. Y. – STROUD, J. L. – MA, J. F. – MCGRATH, S. P. – ZHAO, F. J. (2009a): Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science & Technology, 43(10), 3778–3783. https://doi.org/10.1021/es803643v

LI, R.-Y. – AGO, Y. – LIU, W.-J. – MITANI, N. – FELDMANN, J. – MCGRATH, S. P. – MA, J. F. – ZHAO, F.-J. (2009b): The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiology, 150(4), 2071–2080. https://doi.org/10.1104/pp.109.140350

LIMMER, M. A. – MANN, J. – AMARAL, D. C. – VARGAS, R. – SEYFFERTH, A. L. (2018): Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry. Science of the Total Environment, 624, 1360–1368. https://doi.org/10.1016/j.scitotenv.2017.12.207

LIU, W.-J. – ZHU, Y.-G. – SMITH, F. A. (2005): Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant and Soil, 277(1), 127–138. https://doi.org/10.1016/j.scitotenv.2017.12.207

LIU, W.-J. – ZHU, Y.-G. – SMITH, F. A. – SMITH, S. E. (2004): Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytologist, 162(2), 481–488. https://doi.org/10.1111/j.1469-8137.2004.01035.x

LU, Y. – DONG, F. – DEACON, C. – CHEN, H. – RAAB, A. – MEHARG, A. A. (2010): Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environmental Pollution, 158(5), 1536–1541. https://doi.org/10.1016/j.envpol.2009.12.022

MA, J. F. (2004): Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11–18. https://doi.org/10.1080/00380768.2004.10408447

MA, J. F. – TAMAI, K. – YAMAJI, N. – MITANI, N. – KONISHI, S. – KATSUHARA, M. – ISHIGURO, M. – MURATA, Y. – YANO, M. (2006): A silicon transporter in rice. Nature, 440(7084), Article 7084. https://doi.org/10.1038/nature04590

MA, J. F. – YAMAJI, N. – MITANI, N. – XU, X.-Y. – SU, Y.-H. – MCGRATH, S. P. – ZHAO, F.-J. (2008): Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29), 9931–9935. https://doi.org/10.1073/pnas.0802361105

MEHARG, A. A. – ZHAO, F.-J. (2012): Arsenic & Rice. Springer Netherlands. https://doi.org/10.1007/978-94-007-2947-6

NEUPANE, G. – DONAHOE, R. J. (2013): Calcium–phosphate treatment of contaminated soil for arsenic immobilization. Applied Geochemistry, 28, 145–154. https://doi.org/10.1016/j.apgeochem.2012.10.011

NORTON, G. J. – DUAN, G. – DASGUPTA, T. – ISLAM, M. R. – LEI, M. – ZHU, Y. – DEACON, C. M. – MORAN, A. C. – ISLAM, S. – ZHAO, F.-J. – STROUD, J. L. – MCGRATH, S. P. – FELDMANN, J. – PRICE, A. H. – MEHARG, A. A. (2009a): Environmental and genetic control of arsenic accumulation and speciation in rice grain: Comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. Environmental Science & Technology, 43(21), 8381–8386. https://doi.org/10.1021/es901844q

NORTON, G. J. – ISLAM, M. R. – DEACON, C. M. – ZHAO, F.-J. – STROUD, J. L. – MCGRATH, S. P. – ISLAM, S. – JAHIRUDDIN, M. – FELDMANN, J. – PRICE, A. H. (2009b): Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environmental Science & Technology, 43(15), 6070–6075. https://doi.org/10.1021/es901121j

NORTON, G. J. – TRAVIS, A. J. – TALUKDAR, P. – HOSSAIN, M. – ISLAM, M. R. – DOUGLAS, A. – PRICE, A. H. (2019): Genetic loci regulating arsenic content in rice grains when grown flooded or under alternative wetting and drying irrigation. Rice, 12(1), 54. https://doi.org/10.1186/s12284-019-0307-9

PANAULLAH, G. M. – ALAM, T. – HOSSAIN, M. B. – LOEPPERT, R. H. – LAUREN, J. G. – MEISNER, C. A. – AHMED, Z. U. – DUXBURY, J. M. (2009): Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil, 317(1), 31–39. https://doi.org/10.1007/s11104-008-9786-y

PIGNA, M. – COZZOLINO, V. – VIOLANTE, A. – MEHARG, A. A. (2009): Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water, Air, and Soil Pollution, 197(1), 371–380. https://doi.org/10.1007/s11270-008-9818-5

PILLAI, T. R. – YAN, W. – AGRAMA, H. A. – JAMES, W. D. – IBRAHIM, A. M. H. – MCCLUNG, A. M. – GENTRY, T. J. – LOEPPERT, R. H. (2010): Total Grain-Arsenic and Arsenic-Species Concentrations in Diverse Rice Cultivars under Flooded Conditions. Crop Science, 50(5), 2065–2075. https://doi.org/10.2135/cropsci2009.10.0568

SIGNES-PASTOR, A. – BURLÓ, F. – MITRA, K. – CARBONELL-BARRACHINA, A. A. (2007): Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma, 137(3), 504–510. https://doi.org/10.1016/j.geoderma.2006.10.012

SONG, W.-Y. – YAMAKI, T. – YAMAJI, N. – KO, D. – JUNG, K.-H. – FUJII-KASHINO, M. – AN, G. – MARTINOIA, E. – LEE, Y. – MA, J. F. (2014): A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences, 111(44), 15699–15704. https://doi.org/10.1073/pnas.1414968111

SPANU, A. – VALENTE, M. – LANGASCO, I. – LEARDI, R. – ORLANDONI, A. M. – CIULU, M. – DEROMA, M. A. – SPANO, N. – BARRACU, F. – PILO, M. I. – SANNA, G. (2020): Effect of the irrigation method and genotype on the bioaccumulation of toxic and trace elements in rice. Science of The Total Environment, 748, 142484. https://doi.org/10.1016/j.scitotenv.2020.142484

SZALÓKI, T. – SZÉKELY, Á. – VALKOVSZKI, N. J. – TARNAWA, Á. – JANCSÓ, M. (2022): Evaluation of Arsenic Content of Four Temperate Japonica Rice Varieties in a Greenhouse Experiment (S. Phoutthasone & L. Máthé, Eds.; pp. 48–52).

TAKAHASHI, Y. – MINAMIKAWA, R. – HATTORI, K. H. – KURISHIMA, K. – KIHOU, N. – YUITA, K. (2004): Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science & Technology, 38(4), 1038–1044. https://doi.org/10.1021/es034383n

TRIPATHI, R. D. – SRIVASTAVA, S. – MISHRA, S. – SINGH, N. – TULI, R. – GUPTA, D. K. – MAATHUIS, F. J. M. (2007): Arsenic hazards: Strategies for tolerance and remediation by plants. Trends in Biotechnology, 25(4), 158–165. https://doi.org/10.1016/j.tibtech.2007.02.003

WILLIAMS, P. N. – PRICE, A. H. – RAAB, A. – HOSSAIN, S. A. – FELDMANN, J. – MEHARG, A. A. (2005): Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science & Technology, 39(15), 5531–5540. https://doi.org/10.1021/es0502324

WU, Z. – REN, H. – MCGRATH, S. P. – WU, P. – ZHAO, F.-J. (2011): Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiology, 157(1), 498–508. https://doi.org/10.1104/pp.111.178921

ZENG, X. –WU, P. – SU, S. – BAI, L. – FENG, Q. (2012): Phosphate has a differential influence on arsenate adsorption by soils with different properties. Plant, Soil and Environment, 58(9), 405–411.

ZHAO, F. J. – MA, J. F. – MEHARG, A. A. – MCGRATH, S. P. (2009) : Arsenic uptake and metabolism in plants. New Phytologist, 181(4), 777–794. https://doi.org/10.1111/j.1469-8137.2008.02716.x

ZHAO, F.-J. – MCGRATH, S. P. – MEHARG, A. A. (2010): Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61, 535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

Letöltések

Megjelent

2023-06-14

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Áttekintés a rizs arzéntartalmának csökkentési lehetőségeiről. (2023). Journal of Central European Green Innovation, 11(1), 55-66. https://doi.org/10.33038/jcegi.4492