Development of a Modular, Induced Fluorescence-based Instrument Family – The Aquafluosense Project
DOI:
https://doi.org/10.33038/jcegi.3483Kulcsszavak:
fluorescence, water analysis, microcontaminants, zearalenone, glyphosateAbsztrakt
In the scope of our recently completed AQUAFLUOSENSE research and development project, the design and construction of a prototype of an electron excitation fluorescence-based analytical instrument family has been carried out for water quality measurement applications. The objective of the project was to develop a new water analysis system for natural and artificial waters, allowing complex, systematic and for main parameters in situ assessment and monitoring of water quality, by developing a modular instrument family that can be individually configured for target tasks at each monitoring point. Within the instrument family, created in a collaboration of working groups of a number of research and development institutions, different modules allow for the determination of key water parameters. A common optical characteristic of these modules is that they measure the target parameter on the basis of an induced (excitation) fluorescence signal generated in the test sample. The modules allow the determination of individual biological or chemical components based either on measuring their fluorescence directly (direct fluorescence) or by relying on detection of the fluorescence of a coupled dye (indirect fluorescence). Thus, the instrument modules provide experimental data on the algal density and the total organic carbon content, as well as the presence of certain organic micropollutants in the given water body studied, the latter target analytes detected by direct fluorescence measurement or by an immunofluorescence measurement modality.
Hivatkozások
ADÁNYI, N. – BERKI, M. – KÓNYA, É. – KLÁTYIK, SZ. – LÁZÁR, D. – GÉMES, B. – CSŐSZ, D. – LENK, S. – BARÓCSI, A. – CSŐKE, L. T. – CSÁKÁNYI, A. – DOMJÁN, L. – SZARVAS, G. – KOCSÁNYI, L. – SZÉKÁCS, A. (2019): Fluorescence instrumentation for rapid, in situ water quality assessment. Proc. 11th International Conference on Instrumental Methods of Analysis (IMA-2019) (26-29. September 2019, Ioannia, Greece) p. 151.
AQUAFLUOSENSE (2020): Welcome at the AQUAFLUOSENSE Project. Accessed: 15. October 2022. Source: https://aquafluosense.hu/index.php?nyelv=en
BARÓCSI, A. – LENK, S. – KLÁTYIK, SZ. – TAKÁCS, E. – SZARVAS, G. – GÁDOROS, P. – DOMJÁN, A. – KOCSÁNYI, L. – SZÉKÁCS, A. (2018): Indication of algae density and polycyclic aromatic hydrocarbons in water quality assessment using sensitive fluorescent techniques at high dynamic range. Proc. 5th Workshop on Leaf Optics (1-5. October 2018, Ebernburg, Germany) p. 5.
BERKI, M. – KÓNYA, É. – GÉMES, B. – KLÁTYIK, SZ. – CSŐSZ, D. – LENK, S. – BARÓCSI, A. – CSŐKE, L. T. – CSÁKÁNYI, A. – DOMJÁN, L. – SZARVAS, G. – KOCSÁNYI, L. – ADÁNYI, N. – SZÉKÁCS, A. (2020): Fluorescence instrumentation for rapid, in situ determination of PAHs in surface water. Proc. 11th International Conference on Instrumental Methods of Analysis (IMA-2019) (26-29. September 2019, Ioannia, Greece) p. 212.
BEUTLER, M. – WILTSHIRE, K. H. – MEYER, B. – MOLDAENKE, C. – LÜRING, C. – MEYERHÖFER, M. – HANSEN, U.P. – DAU, H. (2002): A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res. 72, 39–53. DOI: https://doi.org/10.1023/A:1016026607048
BRIGHT, F. V. (1988): Bioanalytical applications of fluorescence spectroscopy. Anal. Chem.. 60(18): 1031A-1039A. DOI: https://doi.org/10.1021/ac00169a001
CARL ZEISS Co. (2022): Education in Microscopy and Digital Imaging. Accessed: 15. October 2022. Source: Carl Zeiss Co. https://zeiss-campus.magnet.fsu.edu/articles/basics/fluorescence.html
EUROPEAN COUNCIL (2008): Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off. J. Eur. Union L 348, 84–97. http://data.europa.eu/eli/dir/2008/105/oj
EUROPEAN COUNCIL (2001): Decision 2455/2001/EC of the European Parliament and of the European Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. Off. J. Eur. Union L 331, 1–5.
COURTECUISSE, E. – OXBOROUGH, K. – TILSTONE, G. H. – SPYRAKOS, E. – HUNTER, P. D. – SIMIS, S. G. H. (2022): Determination of optical markers of cyanobacterial physiology from fluorescence kinetics. J Plankton Res. 44(3), 365–385. DOI: https://doi.org/10.1093/plankt/fbac025
KAHLERT, M. - MCKIE, B. G. (2014): Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters. Environ. Sci. Proc. Imp. 16, 2627–2634. DOI: https://doi.org/10.1039/C4EM00326H
CSŐSZ, D. – LENK, S. – BARÓCSI, A. – CSŐKE, L. T. – KLÁTYIK, SZ. – LÁZÁR, D. – BERKI, M. – ADÁNYI, N. – CSÁKÁNYI, A. – DOMJÁN, L. – SZARVAS, G. – KOCSÁNYI, L. – SZÉKÁCS, A. (2019): Sensitive fluorescence instrumentation for water quality assessment. Proc. OSA Optical Sensors and Sensing Congress (25-27. June 2019, San Jose, CA, USA) p. 3.29
GÉMES, B. – TAKÁCS, E. – BARÓCSI, A. – KOCSÁNYI, L. – DOMJÁN, L. – SZARVAS, G. – NABOK, A. – SZÉKÁCS, A. (2020): Determination of the mycotoxin zearalenone in water by immunofluorescence and total internal reflection ellipsometry methods. Proc. 26th International Symposium on Analytical and Environmental Problems (23–24. November 2020, Szeged, Hungary) 142–146.
GÉMES, B. – TAKÁCS, E. – GÁDOROS, P. – BARÓCSI, A. – KOCSÁNYI, L. – LENK, S. – CSÁKÁNYI, A. – KAUTNY, SZ. – DOMJÁN, L. – SZARVAS, G. – ADÁNYI, N. – NABOK, A.. – MÖRTL, M. – SZÉKÁCS, A. (2021): Development of an immunofluorescence assay module for determination of the mycotoxin zearalenone in water. Toxins, 13(2), 182. DOI: https://doi.org/10.3390/toxins13070475
HENDERSON, R. K. – BAKER A. – MURPHY K.R. – HAMBLY A. – STUETZ R.M. – KHAN S.J. (2009): Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Res. 43(4), 863–881. DOI: https://doi.org/10.1016/j.watres.2008.11.027
KHAMIS, K. – STEVENS, R. (2013): The Use of tryptophan-like fluorescence as an indicator of organic pollution. Envirotech Online Accessed: 15. October 2022. Source: https://www.envirotech-online.com/article/water-wastewater/9/rs-hydro/the-use-of-tryptophan-like-fluorescence-as-an-indicator-of-organic-pollution/1530
KIEFER, D. A. (1973): Fluorescence properties of natural phytoplankton populations. Marine Biol. 22, 263–269. DOI: https://doi.org/10.1007/BF00389180
KÓNYA, É. – BERKI, M. – KLÁTYIK, SZ. – LÁZÁR, D. – CSŐSZ, D. – LENK, S. – BARÓCSI, A. – CSŐKE, L. T. – CSÁKÁNYI, A. – DOMJÁN, L. – SZARVAS, G. – KOCSÁNYI, L. – ADÁNYI, N. – SZÉKÁCS, A. (2019): Fluorescence instrumentation for rapid, in situ determination of dissolved organic matter in water. Proc. 11th International Conference on Instrumental Methods of Analysis (IMA-2019) (26–29. September 2019, Ioannia, Greece) p. 210.
LAKOWICZ, J. R. (Ed.) (2006): Principle of Fluorescence Spectroscopy, 3nd Ed., New York, Springer. 954p. DOI: https://doi.org/10.1007/978-0-387-46312-4
LÁZÁR, D. – GÉMES, B. – KLÁTYIK, SZ. – CSŐSZ, D. – LENK, S. – BARÓCSI, A. – KOCSÁNYI, L. – ADÁNYI, N. – TAKÁCS, E. – SZÉKÁCS, A. (2019): Fluorescence instrumentation for rapid, in situ water quality assessment. Proc. 11th International Conference on Instrumental Methods of Analysis (IMA-2019) (26-29. September 2019, Ioannia, Greece) p. 211.
LÁZÁR, D. – KLÁTYIK, SZ. – LENK, S. – BARÓCSI, A. – KOCSÁNYI, L. – ADÁNYI, N. – TAKÁCS, E. – SZÉKÁCS, A. (2020): Chlorophyll fluorescence instrumentation for a rapid, in situ measurement of algal density. Proc. 26th International Symposium on Analytical and Environmental Problems (23–24. November 2020, Szeged, Hungary) pp. 211–215.
MAJER-BARANYI, K. – BARÓCSI, A. – GÁDOROS, P. – KOCSÁNYI, L. – SZÉKÁCS, A. – ADÁNYI, N. (2022): Development of an immunofluorescent capillary sensor for the detection of zearalenone mycotoxin. Toxins, 14, in press.
NABOK, A. – AL-JAWDAH, A. M. – GÉMES, B. – TAKÁCS, E. – SZÉKÁCS, A. (2021): An optical planar waveguide-based immunosensors for determination of Fusarium mycotoxin zearalenone. Toxins, 13(2), 89. DOI: https://doi.org/10.3390/toxins13020089
SZÉKÁCS, A. (2019): Development of a fluorescence-based sensing and instrument family for complex, in situ water quality characterization [invited lecture in Hungarian]. Proc. Conference on Chemistry of the Hungarian Chemical Society (24–26. June 2019, Eger, Hungary) Accessed: 15. October 2022. Source: https://www.mke.org.hu/Vegyeszkonferencia_2019/meghivott-eloadok/8-meghivott-eloadok/38-szekacs-andras.html
TAKÁCS, E. – GÉMES, B. – SZENDREI, F. – KESZEI, CS. – BARÓCSI, A. – LENK, S. – DOMJÁN, L. – MÖRTL, M. – SZÉKÁCS, A. (2022): Utilization of a novel immunofluorescence instrument prototype for the determination of the herbicide glyphosate. Molecules, 27(19), 6514. DOI: https://doi.org/10.3390/molecules27196514
TIJSSEN, P. (1985): Practice and Theory of Enzyme Immunoassays. 15 in: Laboratory Techniques in Biochemistry and Molecular Biology. Amsterdam, the Netherlands, Elsevier Science, 548p.
YENTSCH, C.S. – PHINNEY, D.A. (1985): Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations. J. Plankton Res. 7(5), 617–632. DOI: https://doi.org/10.1093/plankt/7.5.617
YENTSCH, C. S. – YENTSCH, C.M. (1979): Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra [Algae, diatoms]. J. Mar. Res. 37(3), 471–483.
WEHRY, E. L. (Ed.) (1981): Modern Fluorescence Spectroscopy. New York, Plenum Press. 376 p. DOI: https://doi.org/10.1007/978-1-4684-1092-1
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.