Sustainable Liquid Biofuels (Bioethanol, Biodiesel) Production and Their Multifunctional Impacts

Szerzők

  • Oláh Judit Debreceni Egyetem - Alkalmazott Informatika és Logisztika Intézet
  • Popp József Neumann János Egyetem

DOI:

https://doi.org/10.33038/jcegi.3276

Kulcsszavak:

biofuel, bioethanol, biodiesel, sustainability

Absztrakt

The share of fossil energy (oil, coal, natural gas) in final energy consumption was 79.7% in 2019, renewable energy 18.1% and nuclear energy 2.2% worldwide. Renewable energy is the world's fourth largest source of energy after oil, coal and natural gas, of which "modern" renewables account for 10.6% (wind, solar, hydro, geothermal, biofuels, etc.); traditinal biomass represents 7.5%. Including traditional and modern renewable uses of biomass, bioenergy has contributed 12.7% to the global energy supply. The global spread of biofuel production has provoked serious debate, especially on environmental and social sustainability issues such as its impact on food production, land use change, biodiversity, energy efficiency and climate change. The complexity of economic, social and environmental problems asumes a holistic perspective to reap the benefits of the potential synergy effect. The sustainability of biofuels is, in fact, about optimization between the economic, social and environmental dimensions.

Szerző életrajzok

  • Oláh Judit, Debreceni Egyetem - Alkalmazott Informatika és Logisztika Intézet

    DSc, egyetemi tanár
    Debreceni Egyetem, Gazdaságtudományi Kar
    Alkalmazott Informatika és Logisztika Intézet
    H-4032 Debrecen, Böszörményi út 138.
    olah.judit@econ.uideb.hu

  • Popp József, Neumann János Egyetem

    MTA levelező tag
    Neumann János Egyetem, Magyar Nemzeti Bank, Tudásközpont
    6000 Kecskemét, Izsáki út 10.
    popp.jozsef@uni-neumann.hu

Hivatkozások

ABIDEEN, Z. – ANSARI, R. – GUL, B. – KHAN, M. A. (2012): The place of halophytes in Pakistan’s biofuel industry. Biofuels, 3(2), 211–220. DOI: https://doi.org/10.4155/bfs.11.158

AHERN, J. (2011): From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landscape and Urban Planning, 100(4), 341–343. DOI: https://doi.org/10.1016/j.landurbplan.2011.02.021

BASIAGO, A. D. (1995): Methods of defining ‘sustainability’. Sustainable Development, 3(3), 109–119. DOI: https://doi.org/10.1002/sd.3460030302

BENNETT, E. M. – CRAMER, W. – BEGOSSI, A. – CUNDILL, G. – DÍAZ, S. – EGOH, B. N. – WOODWARD, G. (2015): Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 14(June), 76–85. DOI: https://doi.org/10.1016/j.cosust.2015.03.007

BONSUCRO (2014): The global sugarcane platform: Bonsucro production standard including Bonsucro EU production standard. London: Bonsucro, pp. 1–63. Source: https://www.bonsucro.com/wp-content/uploads/2017/01/Bonsucro-Production-Standard-4.1.pdf. Accessed: 2020. 12. 31.

BRITZ, W. – HERTEL, T.W. (2011): Impacts of EU biofuels directives on global markets and EU environmental quality: an integrated PE, global CGE analysis. Agriculture, Ecosystems & Environment, 142(1–2), 102–109. DOI: https://doi.org/10.1016/j.agee.2009.11.003

BUCHHOLZ, T.S. – VOLK, T. A. – LUZADIS, V.A. (2007): A participatory systems approach to modeling social, economic, and ecological components of bioenergy. Energy Policy, 35(12), 6084–6094. DOI: https://doi.org/10.1016/j.enpol.2007.08.020

CAMPBELL, J.E. – LOBELL, D.B. – GENOVA, R.C. – FIELD, C.B. (2008): The global potential of bioenergy on abandoned agricultural lands. Environmental Science & Technology, 42(15), 5791–5794. DOI: https://doi.org/10.1021/es800052w

CONWAY, G. R. – BARBIER, E. B. (2013): After the green revolution: sustainable agriculture for development. Routledge.

COTES TORRES, A. – URBINA ROJAS, N. – COTES TORRES, J. M. (2007): Multifunctional agriculture and integration of farming production systems within agribusiness chains. Revista Facultad Nacional de Agronomía Medellín, 60(2), 3839–3857.

DALE, V.H. – EFROYMSON, R.A. – KLINE, K L. – LANGHOLTZ, M. H. – LEIBY, P.N. – OLADOSU, G.A. – HILLIARD, M.R. (2013): Indicators for assessing socioeconomic sustainability of bioenergy systems: a short list of practical measures. Ecological Indicators, 26(March), 87–102. DOI: https://doi.org/10.1016/j.ecolind.2012.10.014

DE OLIVEIRA, M.E.D. – VAUGHAN, B.E. – RYKIEL, E.J. (2005): Ethanol as fuels: energy, carbon dioxide balances, and ecological footprint. BioSci, 55(8), 593–602. DOI: https://doi.org/10.1641/0006-3568

DEMIRBAS, A. (2008): Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy conversion and management, 49(8), 2106–2116. DOI: https://doi.org/10.1016/j.enconman.2008.02.020

EBB (2016): European Biodiesel Board. Available on the Internet: Forrás: http://www.ebb-eu.org/biodiesel.php. Accessed: 2020. 12. 31.

EGGERS, J. – TRÖLTZSCH, K. – FALCUCCI, A. – MAIORANO, L. – VERBURG, P.H. – FRAMSTAD, E. – DELBAERE, B. E. N. (2009): Is biofuel policy harming biodiversity in Europe? GCB Bioenergy, 1(1), 18–34. DOI: https://doi.org/10.1111/j.1757-1707.2009.01002.x

EPA (2013): Report on the 2013 U.S. Environmental Protection Agency (EPA) International Decontamination Research and Development Conference. Research Triangle Park, NC, November 05 - 07, 2013. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/210, 2014

EPURE (2018): Overview of biofuel policies and markets across the EU-28. 102. p. Euroepan Renewable Ethanol. Source: https://epure.org/media/1757/180903-def-rep-overview-of-biofuel-policies-and-markets-across-the-eu-28.pdf. Accessed: 2020. 12. 31.

EUROPEAN COMMISSION (EC) (2009a): Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, 11, 39-85. Source: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF. Accessed: 2020. 12. 31.

EUROPEAN COMMISSION (EC) (2009b): Directive 2009/30/EC of the European Parliament and the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC (OJ L 140/88). Source: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0088:0113:EN:PDF. Accessed: 2020. 12. 31.

EUROPEAN COMMISSION (EC) (2019): Report from the Commission to the European Parliamanet, the Council, the Euroepan and Social Committee of the Regions, Renewable Energy Progress Report. Brussels, 9.4.2019 COM(2019) 225 final, European Commission. Source: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:225:FIN. Accessed: 2020. 12. 31.

EUROPEAN UNION (EU) (2015): Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources (OJ L 239/1). Source: http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32015L1513. Accessed: 2020. 12. 31.

EUROSTAT (2019a): Supply, transformation and consumption of renewable energies-annual data. Source: https://www.eea.europa.eu/data-and-maps/data/external/supply-transformation-consumption-renewable-energies. Accessed: 2020. 12. 31.

EUROSTAT (2019b): Statistics Explained, Glossary on Biomass. Source: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Biomass. Accessed: 2020. 12. 31.

FAO (2013):. Statistical Yearbook. Food and Agriculture Organisation of the United Nations. Source: http://www.fao.org/docrep/018/i3107e/i3107e.PDF. Accessed: 2020. 12. 31.

FINKBEINER, M. – SCHAU, E. M. – LEHMANN, A. – TRAVERSO, M. (2010): Towards life cycle sustainability assessment. Sustainability, 2(10), 3309–3322. DOI: https://doi.org/10.3390/su2103309

GOPALAKRISHNAN, G. – NEGRI, M. C. – WANG, M. – WU, M. – SNYDER, S. W. – LAFRENIERE, L. (2009): Biofuels, land, and water: a systems approach to sustainability. Environmental Science & Technology, 43(15), 6094–6100. DOI: https://doi.org/10.1021/es900801u

GNANSOUNOU, E. (2011): Assessing the sustainability of biofuels: a logic-based model. Energy, 36(4), 2089–2096. DOI: https://doi.org/10.1016/j.energy.2010.04.027

GROOM, M.J. – GRAY, E.M. – TOWNSEND, P.A. (2008): Biofuels and biodiversity: principles for creating better policies for biofuel production. Conservation Biology, 22(3), 602–609. DOI: https://doi.org/10.1111/j.1523-1739.2007.00879.x

HARANGI-RÁKOS, M. – POPP, J. – OLÁH, J. (2017): A bioüzemanyag előállítás globális kihívásai. Journal of Central European Green Innovation, 5(4). 13–31.

HARANGI-RÁKOS, M. – POPP, J. – OLÁH, J. (2018): A biomassza energetikai és egyéb célú felhasználása. Magyar Energetika, 25(2). 8–16.

HARSÁNYI, E. – BASHIR, B. – ALMHAMAD, G. – HIJAZI, O. – MAZE, M. – ELBELTAGI, A. – SZABÓ, S. (2021): GHGs Emission from the Agricultural Sector within EU-28: A Multivariate Analysis Approach. Energies, 14(20), 6495, 1–18. DOI: https://doi.org/10.3390/en14206495

HELLMANN, F. - VERBURG, P. H. (2010): Impact assessment of the European biofuel directive on land use and biodiversity. Journal of Environmental Management, 91(6), 1389–1396. DOI: https://doi.org/10.1016/j.jenvman.2010.02.022

IEA (2018): Renewables 2018, Analysis and Forecasts to 2023. International Energy Agency. Source: https://www.iea.org/reports/renewables-2018.com/business/2020/apr/30/covid-19-crisis-demand-fossil-fuels-iea-renewable-electricity. Accessed: 2020. 12. 31.

IGNACIUK, A. (2006): Economics of multifunctional biomass systems. Source: https://www.semanticscholar.org/paper/Economics-of-multifunctional-biomass-systems-Ignaciuk/2aecbbc74f0178d0f9373ddf12abc87c854d0d0a. Accessed: 2020. 12. 31.

KARTHA, S. – LARSON, E.D. (2000): Bioenergy primer: Modernized biomass energy for sustainable development, Technical Report UN Sales Number E.00.III.B.6, United Nations Development Programme. 1 United Nations Plaza, New York, NY 10017, USA. Source:https://www.undp.org/content/dam/aplaws/publication/en/publications/environment-energy/www-ee-library/sustainable-energy/bioenergy-primer-modernised-biomass-energy-for-sustainable-development/Bioenergy%20Primer_2000.pdf. Accessed: 2020. 12. 31.

KAZAMIA, E. – SMITH, A.G. (2014): Assessing the environmental sustainability of biofuels. Trends in Plant Science, 19(10), 615–618. DOI: https://doi.org/10.1016/j.tplants.2014.08.001

LADANAI, S. – VINTERBÄCK, J. (2009): Global potential of sustainable biomass for energy (No. 013). Source: https://worldbioenergy.org/uploads/WBA_Global%20Potential.pdf

LANGEVELD, J.W.A. – DIXON, J. – VAN KEULEN, H. – QUIST–WESSEL, P.M.F. (2014): Analyzing the effect of biofuel expansion on land use in major producing countries: Evidence of increased multiple cropping. Biofuel Bioprod. Biorefin, 8(1), 49–58. DOI: https://doi.org/10.1002/bbb.1432

LEWANDOWSKI, I. – FAAIJ, A.P.C. (2006): Steps toward the development of a certification system for sustainable bioenergy trade. Biomass Bioenergy, 30(2), 83–104. DOI: https://doi.org/10.1016/j.biombioe.2005.11.003

LORA, E.E.S. – PALACIO, J.C.E. – ROCHA, M.H. – RENÓ, M.L.G. – VENTURINI, O.J. – DEL OLMO, O.A. (2011): Issues to consider, existing tools and constraints in biofuels sustainability assessments. Energy, 36(4), 2097–2110. DOI: https://doi.org/10.1016/j.energy.2010.06.012

LUZADIS, V.A. – VOLK, T.A. – BUCHHOLZ, T.S. (2008): Using a systems approach to improve bioenergy sustainability assessment. In: Solomon B.D. – Luzadis V.A. (eds): Renewable Energy from Forest Resources in the United States. Routledge, Oxford, UK, 196–209.

MANGOYANA, R.B. – SMITH, T.F. – SIMPSON, R. (2013): A systems approach to evaluating sustainability of biofuel systems. Renewable and Sustainable Energy Reviews, 25, 371–380. Source: https://www.raeng.org.uk/publications/reports/biofuels. Accessed: 2020. 12. 31.

MCBRIDE, A.C. – DALE, V.H. – BASKARAN, L.M. – DOWNING, M.E. – EATON, L.M. – EFROYMSON, R.A. – GARTEN, C.T. – JR, KLINE, K. L. – JAGER, H.I. – MULHOLLAND, P.J. – PARISH, E.S. – SCHWEIZER, P.E. – STOREY, J.M. (2011): Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators, 11(5), 1277–1289. DOI: https://doi.org/10.1016/j.ecolind.2011.01.010

MENSAH, J. (2019): Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Social Sciences, 5(1), 1653531. DOI: https://doi.org/10.1080/23311886.2019.1653531

MIZIK, T. (2021): Economic Aspects and Sustainability of Ethanol Production: A Systematic Literature Review. Energies, 14(19), 6137. DOI: https://doi.org/10.3390/en14196137

MIZIK, T. – GYARMATI, G. (2021): Economic and Sustainability of Biodiesel Production: A Systematic Literature Review. Clean Technologies, 3(1), 19–36. DOI: https://doi.org/10.3390/cleantechnol3010002

NEUWAHL, F. – LÖSCHEL, A. – MONGELLI, I. – DELGADO, L. (2008): Employment impacts of EU biofuels policy: Combining bottom-up technology information and sectoral market simulations in an input-output framework. Ecological Economics, 68(1–), 447–460. DOI: https://doi.org/10.1016/j.ecolecon.2008.04.018

OECD/FAO (2019): Agricultural Outlook 2019-2028. OECD Publishing, Organisation for Economic Co-operation and Development and Food and Agriculture Organization of the United Nations, Rome. DOI: 10.1787/agr_outlook-2019-en. Accessed: 2020. 12. 31.

OLADOSU, G. – KLINE, K. – URIA-MARTINEZ, R. – EATON, L. (2011): Sources of corn for ethanol production in the United States: a decomposition analysis of the empirical data. Bioprod Bioref, 5(6), 640–653. DOI: https://doi.org/10.1002/bbb.305

OLÁH, J. – LENGYEL, P. – BALOGH, P. – HARANGI-RÁKOS, M. – POPP, J. (2017): The role of biofuels in food commodity prices volatility and land use. Journal of Competitiveness, 9(4), 81–93.

OLÁH, J. – KRISÁN, E. – KISS, A. – LAKNER, Z. – POPP, J. (2020): PRISMA Statement for Reporting Literature Searches in Systematic Reviews of the Bioethanol Sector. Energies, 13(9), 1–34. DOI: https://doi.org/10.3390/en13092323

POPP, J. – LAKNER, Z. – HARANGI-RAKOS, M. – FARI, M. (2014): The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32(April), 59–578. DOI: https://doi.org/10.1016/j.rser.2014.01.056

POPP, J. – HARANGI-RÁKOS, M. – ANTAL, G. – BALOGH, P. – LENGYEL, P. – OLÁH, J. (2016): Substitution of traditional animal feed with coproducts of biofuel production: economic, land-use and GHG emissions implications. Journal of Central European Green Innovation, 4(3), 1–17.

POPP, J. – HARANGI-RÁKOS, M. – OLÁH, J. (2017): A megújuló energia termelésének globális kilátásai az energiafogyasztásban Magyarországon. Logisztikai Trendek és Legjobb Gyakorlatok, 3(2), 55–60.

RAJAGOPAL, D. – ZILBERMAN, D. (2007): Review of environmental, economic and policy aspects of biofuels, policy research working paper 4341. World Bank. Source: http://documents.worldbank.org/curated/en/393941468339901359/Review-of-environmental-economic-and-policy-aspects-of-biofuels. Accessed: 2020. 12. 31.

REN21 (2019): Renewables 2019 Global Status Report. Renewable Energy Policy Network for the 21st Century. Source: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf

SCARLAT, N. – DALLEMAND, J. F. – MONFORTI-FERRARIO, F. – BANJA, M. – MOTOLA, V. (2015): Renewable energy policy framework and bioenergy contribution in the European Union: An overview from National Renewable Energy Action Plans and Progress Reports. Renewable and Sustainable Energy Reviews, 51(November), 969–985. DOI: https://doi.org/10.1016/j.rser.2015.06.062

SSEGANE, H. – NEGRI, M. C. – QUINN, J. – URGUN-DEMIRTAS, M. (2015): Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system. Biomass and Bioenergy, Volume. 80 (September), 179–190. DOI: https://doi.org/10.1016/j.biombioe.2015.04.012

SMEETS, E.M.W. – FAAIJ, A.P.C. – LEWANDOWSKI, I.M. – TURKENBURG, W.C. (2007): A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33(1), 56–106. DOI: https://doi.org/10.1016/j.pecs.2006.08.001

SOLOMON, B.D. (2008): Regional economic impacts of cellulosice than ol development in the North Centralstates. In: Solomon B.D. – Luzadis V.A. (eds): Renewable Energy from Forest Resources in the United States. Routledge, Oxford, UK, 281–298.

SRIVASTAVA, S.K. (2007): Green supply‐chain management: a state‐of‐the‐art literature review. International Journal of Management Reviews, 9(1), 53–80. DOI: https://doi.org/10.1111/j.1468-2370.2007.00202.x

SEIXAS, R. - VIART, N. - SLAVINSKI, S. (2021): Bonsucro outcome report 2018. Executive summary, pp. 1-48.

UNICA (2010): EPA Reaffirms Sugarcane Biofuel is Advanced Renewable Fuel with 61% Less Emissions than Gasoline. Institutional Network of Universities from the Capitals of Europe. Source: http://english.unica.com.br/releases/show.asp?rls. Accessed: 2020. 12. 31.

VAN DAM, J. – JUNGINGER, M. – FAAIJ, A. – JÜRGENS, I. – BEST, G. – FRITSCHE, U. (2008): Overview of recent developments in sustainable biomass certification. Biomass and Bioenergy, 32(8), 749–780. DOI: https://doi.org/10.1016/j.biombioe.2008.01.018

VAN GRINSVEN, A. – KAMPMAN, B. (2015): Assessing progress towards implementation of the ILUC Directive, Delft, CE Delft. December 2015. Source: https://theicct.org/sites/default/files/publications/CE_Delft_4H38_Assessing_progress_towards_implementation_ILUC_dir.pdf. Accessed: 2020. 12. 31.

WBA (2015): WBA Global Energy Statistics, World Bioenergy Association. Source: https://worldbioenergy.org/content/

wba-launches-global-bioenergy-statistics-2015. Accessed: 2020. 12. 31.

WEI, M. – PATADIA, S. – KAMMEN, D. M. (2010): Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?. Energy policy, 38(2), 919–931. DOI: https://doi.org/10.1016/j.enpol.2009.10.044

WU, Y. – LIU, S. – LI, Z. (2012): Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States. Gcb Bioenergy, 4(6), 875–888. DOI: https://doi.org/10.1111/j.1757-1707.2012.01164.x

Letöltések

Megjelent

2022-08-18

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Sustainable Liquid Biofuels (Bioethanol, Biodiesel) Production and Their Multifunctional Impacts. (2022). Journal of Central European Green Innovation, 10(1), 3-20. https://doi.org/10.33038/jcegi.3276