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Abstract 

The effect of soil tillage operation on soil biological properties has not been extensively studied 

in Hungary. We investigated some soil biological enzymatic activities (dehydrogenase, β-

glucosidase, and phosphatase) of a Luvisol, treated by different tillage, management intensities, 

i.e., conservation tillage (CT), fully conventional tillage with mouldboard ploughing every year 

(PT), and moderately conventional tillage with shallow and deep ripping intermittently in every 

two years (BR). A pot experiment was carried out in climate-controlled growth chamber for six 

weeks as a model experiment, of using the composite soils (0-20 depth) with the three types of 

tillage intensity. Our finding suggested, that adding of the crop residues might increase the soil 

organic matter content, that is reflected by the high concentration of labile carbon in the CT 

soil. The greater intensified soil aeration at the conventional tillage operation, contributed to 

the much higher dehydrogenase activity in the PT and the BR soil. Otherwise, the higher 

aeration of soil resulted a decreased β-glucosidase activity in the conventional tillage (BR) soil. 

The high phosphorus availability of soil correlated by the lowest phosphatase enzymatic 

activity and the improved available P ratio in CT soil, indicating the inhibition of phosphatase 

activity. The soil biological enzymatic activities was shown to be affected by the presence of 

different substrates at the three management practices.  
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ENZIM AKTIVITÁSOK ÖSSZEHASONLÍTÓ VIZSGÁLATA 

TALAJKÍMÉLŐ ÉS HAGYOMÁNYOS MŰVELÉSŰ 

MODELLKÍSÉRLETBEN LUVISOLS TALAJOKON 

Összefoglalás 

Vizsgáltuk a Luvisol talajbiológiai, enzim-aktivitását különböző talajművelési intenzitások 

mellett, azaz kímélő (CT), teljesen hagyományos (PT) és mérsékelt-hagyományos talajművelési 

gyakorlat (BR) mellett modell-kísérleti háttérrel. A klímaszabályozott növényszobában hat 

héten át tenyészedényes kísérletet végeztünk a háromféle talajművelésből származó talaj 

felhasználásával. Eredményeink azt mutatták, hogy a növényi maradványok hozzáadása növeli 

a talaj szervesanyag-tartalmát, amit a CT talajban lévő labilis szén magas koncentrációja is 

tükrözött. A hagyományos talajművelés mellett az erősebb talajművelés valószínűleg 

hozzájárult a PT és a BR talajok magasabb dehidrogenáz enzim aktivitásához. A nagyobb-fokú 

művelés csökkentette a β-glükozidáz enzim aktivitását is a hagyományos művelésű talajban 

(BR). A magas foszfor hozzáférhetőség a foszfatáz enzim aktivitás csökkenését váltotta ki a 

rendelkezésre álló foszfor mennyiségével összhangban a CT talajban. Megállapítottuk, hogy a 
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talajok biológiai aktivitását a rendelkezésre álló szubsztrátok jelenléte befolyásolja a 

különböző művelésű talajokban, szoros összefüggésben a talajok nedvességtartalmával.  

Kulcsszavak: labilis szén, dehidrogenáz, β-glükozidáz, foszfatáz, mineralizáció 

Introduction 

Creating a favorable environment for root growth and seedbed preparation are the main 

purposes of soil tillage in agriculture. Mouldboard ploughing and disc-harrowing are the 

common techniques in tillage operation called conventional tillage. The investigation by 

KHAN et al. (2017); AHUJA et al. (1998) indicated the alteration of soil physical properties 

under conventional tillage, such as the lower bulk density, higher aeration and total porosity, 

and the changing of pore size distribution. On the other hand, many studies have reported that 

long-term conservation tillage practice results in soil structure deterioration and reduces soil 

aggregate- and organic matter content (KLADIVKO, 2001; ROPER et al., 2010; ZHENG et 

al., 2018). Soil organics and the related and enhanced soil-biological activities are crucial in 

considering soil health parameters among the agri- and horti-cultural conditions (VERMANN 

et al., 2021).  

Conservation tillage leaves ~30% of the litter on the surface of the soil is the system that 

harmonizes soil protection with the demands of the crop, soil, and climate (BIRKÁS et al., 

2014; BOGUNOVIC et al., 2019). Conservation tillage increases the soil organic matter that 

plays an important role in the quantity, diversity, and activity of soil microorganisms in the 

upper soil depth (CHOUDHARY et al., 2018; PEIGNÉ et al., 2018; SZABÓ et al. 2022). In 

addition, the minimum soil disruption in conservation tillage enhances the stability of the 

rhizosphere bacterial community (WANG et al., 2017). Conservation tillage has been 

implemented in Hungary for over three decades (BIRKAS et al., 2017). Some researchers have 

compared the effect of conservation and conventional tillage on soil properties, including soil 

water content, penetration resistance, crumb ratio, and crusted area (BOGUNOVIC et al., 

2019); soil physical properties, earthworm abundance, and crop yield (DEKEMATI et al., 

2019). Several previous long-term studies that emphasize soil erosion, nutrient loss, and 

nitrogen use efficiency in different tillage intensity has also been reported by MADARÁSZ et 

al. (2011, 2021), JAKAB et al. (2017), JUG et al. (2019). The investigation to figure out the 

effect of different tillage intensities on soil biological enzymatic activities has not been widely 

carried out in Hungarian Luvisol, whereas this soil type dominates the arable land for 

agriculture in Hungary.  

We assessed the labile carbon and the activity of soil enzymes of the Luvisol soil to find out 

how the tillage intensity influences some of the soil biological activity, assessed by the 

investigating some enzyme functioning.  

Materials and methods 

Soil treatments 

This study used the Luvisol soil (IUSS WORKING GROUP WRB, 2014) collected from 

Szentgyörgyvár and Baranya, Hungary, in the 2020 spring season. The soil material was 

sampled at 0-20 cm depth by the composite method. Each composite sample comprised of 

minimum four random sampling points representing the area of the three types of soil tillage 

intensity (Table 1). 
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Table 1. Types of soil tillage intensity and origine of the soils, used in the model 

experiment. 

Type Description 

Conservation tillage (CT) Non-inversion reduced tillage (8–12 cm depth), 

leaving ~30 % of the soil surface covered with crop 

residues, and a cultivator (8–10 cm depth) to weed 

control in every year. 

Fully conventional tillage (PT) Mouldboard ploughing (up to 25–30 cm depth) in 

every year. 

Moderately conventional tillage (BR)  Shallow and deep ripping (up to 15 cm and 45 cm 

depth) intermittently in every two years.  

 

 

Five hundred grams of CT, PT, and BR soils were packed into plastic pots. Three seeds of corn 

(Zea mays L.) were sowed and frequently irrigated. The seven days after sowing and the young 

plants have emerged, thinning out was conducted to select a plant with the best growing. The 

nutrient treatments of using microbial biofertilizer industrial products was used, by applying 

Bact-Inoc in 15 l ha-1, Myc-Inoc in 10 kg ha-1 dosage, and No-Inoc established in the soil of 

each tillage intensity (products and industrial producers are available at the authors).  

A completely randomized design (CRD) that consisted of five pots for each nutrient treatment 

was employed in this experiment. So, there were fifteen pots totally for each soil tillage 

intensity. The treated pots are then arranged in the tray and kept in the plant growth chamber 

for about six weeks. The air temperature was set for an average of 25 °C. An air conditioner 

unit was employed to assist the air circulation in the chamber. For sunlight replacement, two 

units of LED UV grow light lamps were installed above each tray and lighted on for 24 hours. 

The soil moisture content of all pots was maintained to 100% of the field capacity condition.  

Soil analysis 

 A composite soil sample was taken from each nutrient treatment pot, and soil water 

content was measured. Further, the soil is kept in the fridge at 4 °C until soil enzymes analysis 

to maintain the soil fresh. The other part of the composite samples was dried at room 

temperature (20 °C) for labile carbon and available P analysis. Labile C was measured by the 

KMnO4 oxidation method (WEIL et al., 2003). A 1 g air-dried soil was reacted in KMnO4 and 

shaken. Samples were then measured spectrophotometrically at 565 nm wavelength. The 

potential available P was determined by 0.03 M NH4F and 0.1 M HCl extraction methods 

(BRAY & KURTZ, 1945).   

 Dehydrogenase activity (DHA) was assessed by the optimizing method of VERES et 

al. (2013). 1 ml soil solution (the soil - water ratio is 1:10) was reacted with triphenyl 

tetrazolium chloride (TTC) and then incubated for 24 hours at 30 °C. Methanol was used to 

terminate the enzymatic reaction. The mixture then was centrifuged in the mixture to obtain the 

soil supernatant. The DHA was measured spectrophotometrically at 546 nm wavelength.  

 The β-glucosidase activity was assessed by SINSABAUGH et al. (1999). 1 ml of soil-

water solution (1: 20) in a test tube was reacted to PNP-β, while the other two tubes were reacted 

with the Na-acetate buffer. The tubes were then incubated for 2 hours at 30 °C. A Tris-

hydroxymethyl (aminomethane) (pH 12) and CaCl2 solution were added to stop the enzymatic 

reaction. The supernatant was obtained by centrifuging the tubes. A spectrophotometer was 

employed to measure the activity of β-glucosidase at 410 nm.   

 A similar procedure was used in determining soil phosphatase activity. The method 

was based on the amount of P-nitrophenol (PNP) converted from p-nitrophenyl-phosphate 
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(PNP-PO4). The CaCl2 and NaOH solutions are added to this measurement to stop the 

enzymatic reaction. A spectrophotometer was operated at 410 nm to measure the soil 

phosphatase activity SINSABAUGH et al. (1999).  

Data analysis 

We compared the Luvisol soil under different tillage intensities (CT, PT, and BR), where the 

nutrient treatments viz. Bact-Inoc, Myc-Inoc, and No-Inoc as the replication. The ANOVA and 

Pearson correlations test were employed using IBM SPSS statistics for windows, version 27.0 

(IBM Corp., 2019). All analyses were carried out with a significant p-value of 0.05. In addition, 

the assumption test, normality and heterogeneity of variance were checked for the data. The 

heterogeneity of variance for the activity of dehydrogenase, β-glucosidase, and phosphatase 

was “violated” with a p-value < 0.05; therefore, we performed the post-hoc test by the Games-

Howell method. 

Results 

Tillage intensity significantly affected the measured soil biological enzymatic activities in our 

experiment. The ANOVA result of studied soil biological activities is shown in Table 1. 

 

Table 1. The ANOVA table for means of assessed soil biological and enzymatic activities 

in the modell experiment with luvisol and various management intensities 

Soil biological activities df Mean Square F Sig. 

Labile Carbon 2 46100.646 21.533 0.000 

Dehydrogenase 2 13.097 11.548 0.001 

β-glucosidase 2 2.205 8.241 0.004 

Phosphatase 2 54.348 7.556 0.005 

 

Labile Carbon 

Labile carbon concentration was significantly higher in the CT soil (460.54 ± 36.77 mg kg-1) 

followed by BR (394.73 ± 42.02 mg kg-1) and PT soil (317.55 ± 57.48 mg kg-1) (Fig. 1). This 

circumstance indicated that high organic matter input by the crop residue increase the soil 

carbon content and it confirmed the previous results by BONGIORNO et al. (2019); 

MALOBANE et al. (2020); KOTROCZÓ et al. (2022).Our finding also suggested that the more 

intensive tillage practice, the lower soil organic carbon concentration. It could be explained that 

conventional tillage practice damages the soil structure. In addition, the temperature in the 

growth chamber was very proper to the activity of soil microorganisms. This condition boosted 

the soil organic matter decomposition, resulting in organic carbon losses through the air and the 

water (LAJTHA et al., 2018; BILANDŽIJA et al., 2017; CHOWANIAK et al., 2020; JUHOS 

et al., 2021). 
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Figure 1. Labile carbon concentration of soil under different tillage intensities. The 

different lowercase letter (a and b) means a significant difference in soil tillage intensity 

(p < 0.05). 

 

Dehydrogenase activity  

The highest activity of dehydrogenase occurred in the BR soil (3.09 ± 1.82 TPF µg g-1 dry soil) 

compared to CT and PT soil (0.34 ± 0.07 and 0.77 ± 0.24 TPF µg g-1 dry soil consecutive) (Fig. 

2). DHA associates with soil moisture and reflects the microbial redox system and the oxidative 

activities of the soil (WEAVER et al., 2012; WOLINSKA & STEPNIEWSK, 2012). Tillage 

operation in the BR and PT soil has improved the soil porosity implying a lower soil water 

holding capacity than the CT soil. Henceforth, potentially, the BR and PT soil to get dry faster 

than CT soil triggering the DHA increment.  

β-glucosidase activity 

β-glucosidase activity in the BR soil was smaller (0.34 ± 68 ± 0.48 TPF µg g-1 dry soil) than in 

CT and PT soil (1.62 ± 0.24 and 1.82 ± 0.71 TPF µg g-1 dry soil respectively) (Fig. 2). The 

more substrate availability by the crop residue application in the CT soil escalated the β-

glucosidase activity (SINSABAUGH et al., 2008). ZHANG et al. (2011) stated that the soil 

water content also drove β-glucosidase activity. In the case of PT soil, even though the substrate 

was smaller than CT soil, the soil water content was probably higher than BR. Therefore, the 

activity of β-glucosidase was not inhibited by the lower soil water content as in the BR soil.  

Phosphatase activity 

The higher phosphatase activity (13.13 ± 0.86 µmol g-1 hour-1) was recorded in the CT soil later 

on in PT (11.65 ± 3.97 µmol g-1 hour-1) and BR soil (7.34 ± 2.24 µmol g-1 hour-1) (Fig. 2). 

Microorganisms, plant, and other environmental factors impact the phosphatase activity. The 

phosphatase activity will decrease along with the decline of soil water content (SARDANS & 

PEÑUELAS, 2004). The good aeration in the conventional tillage soil (PT and BR) has led to 

the low soil water content hindering the phosphatase activity.  

The amount of organic matter in CT soil corresponded to the higher mineralization (Fig. 2) 

that released a large concentration of ammonium and nitrate. These high nitrogen 

concentrations stimulate P mineralization (OLANDER & VITOUSEK, 2000; ), proven by the 

higher concentration of available P in CT soil (85.25 mg kg-1) than in PT and BR soil (38.61 

and 44.80 mg kg-1 consecutively). The solubility of inorganic P also determines the activity of 

phosphatase. Therefore, the high concentration of inorganic P will inhibit the phosphatase 

activity (GIANFREDA et al., 2005). Our recent study showed a resemble situation, where the 
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phosphatase and available P ratio in CT soil was lower (5.4) than in PT and BR (8.2 and 8.6, 

respectively), indicating the inhibition of phosphatase activity by the higher phosphorus 

concentration in CT soil.  

 
 

Figure 2. Soil enzyme activities (dehydrogenase, β-glucosidase and phosphatase) under 

different tillage intensities. The different lowercase letter (a and b) means a significant 

difference in soil tillage intensity (p < 0.05). 

  

Conclusions 

In this study, we investigated the soil biological activity, such as the labile carbon, and three 

different types of soil-enzymes across different tillage intensities of Luvisol soil, in a model 

experiment Our result highlighted low disruption of soil by tillage activity, and the abundance 

of crop residue in the conservation tillage soil elevated the labile carbon concentration. On the 

other hand, the disturbance of soil structure in the conventional tillage soil led to high soil 

porosity that associates with the water holding capacity. Finally, soil biological activity results 

from the soil's biochemical process depending on the soil substrate availability driven by the 

environmental factor. 
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