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Abstract: A Precision Livestock Farming (PLF) system offers real-time insights into animal 

welfare and health, increasing production efficiency. Computer vision in the poultry industry 

enables automated monitoring of animals, providing a wealth of information without the need 

for human resources. The adoption of the “End the Cage Age” initiative by the European 

Commission will phase out caging of farm animals expectedly from 2027, impacting the laying 

hen sector, especially in Hungary where a significant portion of hens are currently raised in 

cage systems that are being replaced with cage-free systems requiring continuous monitoring 

of social behaviour. The initial step in implementing machine vision involves identifying hens 

and determining the number of individuals visible in images. The study involved automatic 

monitoring of various aspects such as behaviour, welfare, and health of Yellow Hungarian 

chickens at a breeding farm in Mosonmagyaróvár. Video recordings captured the activities of 

49 hens in a controlled environment, focusing on detecting individual bird movements and 

predicting behaviours using advanced image processing techniques. The researchers utilized 

open bird datasets and annotation tools to create a specialized dataset for chicken behaviour 

analysis, showing promising results for future enhancements in detection and prediction 

capabilities. 

Keywords: Hens, YOLO, precision livestock, deep learning, object tracking, object detection, 

artificial intelligence, computer vision 

Összefoglalás: A precíziós állattenyésztési rendszerek (PLF) képesek valós időben folyamatos 

képet adni az állatok jólléti, valamint egészségi állapotáról, és egyben a termelés 

hatékonyságának növelését is biztosíthatják. A számítógépes látás az információs technológiák 

fejlődésének köszönhetően a baromfiiparban az állatok megfigyelését teszi lehetővé emberi 

erőforrás igénybevétele nélkül és számtalan információ bemutatására, rögzítésére képes. Az 

mailto:rampasekeva@yahoo.com
mailto:hajdu.csaba@ga.sze.hu
mailto:tuu.szabo.boldizsar@sze.hu
mailto:tempfli.karoly@sze.hu
mailto:laszlo.kornyei@math.sze.hu
mailto:rampasekeva@yahoo.com


LXV. Georgikon Napok Tudományos Konferencia | 65th Georgikon Days Scientific Conference 

146 

“End the Cage Age” elnevezésű európai polgári kezdeményezést az Európai Bizottság 

elfogadta, ami azt jelenti, hogy a haszonállatok ketreces tartásának fokozatos kivezetésére fog 

sor kerülni, legkorábban 2027-től. Ez többek között a tojótyúktartást is jelentős mértékben 

érinti, amellyel kapcsolatban fontos megjegyezni, hogy jelenleg hazánkban a tojótyúk- 

állomány közel háromnegyede (felújított vagy feljavított) ketreces tartástechnológiában termel. 

A ketrec nélküli rendszerekben, nagy állományméretek esetén a tyúkok társas viselkedése 

felértékelődik, a viselkedés folyamatos monitorozására van szükség. Az első kulcsfontosságú 

lépés a gépi látástechnológia alkalmazása során a tyúkok azonosítása és a felvételeken látható 

egyedek számának meghatározása. Ezt követheti a viselkedés, a jólléti állapot, az egészségi 

állapot és egyéb tényezők automatikus nyomon követése. A videófelvételeket 

Mosonmagyaróváron, a Széchenyi István Egyetem Uni-Agro-Food Kft. sárga magyar tyúk 

törzstenyészeteként működő baromfitelepén készítettük. A videofelvételek 49 tyúk 

tevékenységét rögzítették ellenőrzött környezetben, a hangsúlyt az egyes madarak mozgásának 

felismerésére és a viselkedés előrejelzésére helyeztük fejlett képfeldolgozási technikák 

segítségével. A kutatásunkban nyílt, madarakra vonatkozó adatbázisokat és nyílt forráskódú 

annotációs eszközöket használtunk fel a madarak viselkedésének elemzésére specializált 

adathalmaz létrehozásához. Amellett, hogy nagy mennyiségű nyers felvétel keletkezett, 

munkánk eredményeképpen kifejezetten tyúkokra koncentráló annotált adathalmaz készült, 

amely eredményességét az architektúránk kezdeti verziójának működésével bizonyítunk. 

Jövőbeni terv a detektálás és előrejelzés eredményességének javítása. 

Kulcsszavak: tyúk, YOLO, precíziós állattenyésztés, mélytanulás, objektumkövetés, 

objektumdetektálás, mesterséges intelligencia, gépi látás 

1. Introduction 

The European Citizens' Initiative "End the Cage Age" has been embraced by the European 

Commission, signifying that the confinement of farm animals will be phased out from 2027 at 

the earliest (European Commission 2021). This will also exert a noteworthy influence on the 

egg industry, where it is crucial to highlight that currently nearly three-quarters of the laying 

hen population in Hungary is raised in (enriched or enhanced) cage systems. However, 

alternative systems also present several welfare concerns. Non-cage systems for laying hens, 

such as free-range and aviary systems, are increasingly adopted globally due to their potential 

to improve animal welfare by allowing hens to express natural behaviours. Hens in non-cage 

systems face an increased risk of parasitic infections such as Coccidia, Trichostrongylidae, 

Heterakis spp., and Capillaria spp., leading to health issues and decreased productivity (Groves, 

2021; Nenadović et al., 2022), while also experiencing poor indoor air quality with elevated 

levels of ammonia and particulate matter that can harm their respiratory health (Rodenburg et 

al., 2005, Bist et al., 2023). Feather pecking and cannibalism are also more prevalent in 

alternative systems, often exacerbated by high dust levels (Kittelsen et al., 2022) and inadequate 

environmental enrichment (Bonnefous et al., 2022). 

Nevertheless, the increased group sizes and enhanced capacity for displaying a wider range 

of behaviours also play a role in the limitations of cage-free housing systems. An important 

welfare issue in cage-free setups is the significant problem of severe feather pecking. Another 

aspect that impacts welfare is the elevated occurrence of fractures experienced during the laying 

phase (Hartcher and Jones, 2017). 

Precision Livestock Farming (PLF) systems can provide a real-time, continuous picture of 

animal welfare and health, and potentially increase production efficiency (Morrone et al., 2022). 

According to Rowe et al. (2019) most PLF strategies use image analysis to measure welfare in 

poultry production (42% out of 264 publications), as camera surveillance systems combined 
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with image processing techniques are relatively inexpensive methods to objectively measure 

poultry behaviour without entering the barn, which results in behavioural changes in the 

animals. Computer vision, due to the advancement of information technologies in the poultry 

sector, enables the surveillance of animals without the requirement for human resources and 

can display and document an abundance of information (Okinda et al., 2020). 

In cage-free settings with substantial flock sizes, the social conduct of the hens is esteemed, 

and ongoing behaviour monitoring is necessary. A range of studies have explored the use of 

artificial intelligence for video analysis in poultry farming. 

In this research, the hens are observed autonomously in the chicken coops by a camera 

installed on the wall above the hens. The objective is to identify the location and movement 

patterns of individual birds, in order to forecast behaviour and identify aggressive individuals. 

The location and movement pattern identification is conducted using advanced image 

processing methods based on convolutional neural networks (YOLOv8, ResNet architecture) 

and sequential serial processing (LSTM chaining). Our benchmark model, the ChickTrack 

system, executes the task using a comparable structure. Given the absence of a dedicated dataset 

for the task, our goal was to construct a new dataset by utilizing existing open datasets 

portraying avians (Animal Kingdom, American Birds dataset - NABirds). We also marked the 

location and kinematic structure (or pose skeleton) on the dataset to identify motion patterns. 

The marking process used the open-source, freely accessible "Computer Vision Annotation 

Tool" (CVAT.AI) framework. Besides producing a substantial amount of unedited footage, our 

efforts led to a marked dataset specifically concentrating on hens, the efficacy of which is 

illustrated by the functioning of an initial iteration of our structure. Subsequent objectives 

involve enhancing detection and forecasting capabilities. 

2. Materials and Mehods 

The research focuses on the detection and classification of the behaviour of chickens, more 

specifically, the analysis of Yellow Hungarian chickens. The observation and data collection 

are realized in the realistic setting of an experimental chicken farm in Mosonmagyaróvár, 

Hungary. The chicken farm is arranged from 32 holding cabinets, each cabinet containing 

around 50 chickens (hens mixed with roosters). Currently, only a single cabinet is equipped 

with an exterior camera, observing the chickens continuously, and generating raw video footage 

for further analysis. The chicken coop and the installation process are depicted in Figure 1. The 

setting provides the raw footage for further artificial intelligence and data analysis applications. 

 
 

Figure 1. Chicken holding cabinet (camera installation, left) with upper view from camera (right) 

The dataset provides information on the localization and predicted kinematic structure (i.e., 

skeleton) of chickens. Furthermore, the dataset contains localization information of the 

following prevalent objects in a poultry setting: 
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• Hens and roosters. 

• Watering bowl for the chickens 

• Coops holding hen nests. 

• Wall boundaries of the cabins. 

The creation of such a dataset is essential, as datasets focusing on poultry – and particularly on 

chicken - are relatively scarce and usually not open for public use. A particular aim of our 

research is to provide a dataset for precision agriculture applications. 

The video capture of chickens follows a straightforward process depicted in Figure 2. The 

process starts with observing the chicken flock with a camera. The camera is fixed to the ceiling 

of the holding cabin and can view the whole cabin and coops. Next, the videos are stored on a 

storage device that can be placed in a cloud or local storage. In the initial phase, local storage 

was used, and the camera was directly connected to a personal computer. 

 

Figure 2. Closed-loop process of creation of dataset 

The next step is to create the dataset by annotating the captured video, with a tool of selection. 

After a usable dataset, that can be stored in a database, the neural network utilized for detection 

can use the dataset for training. The neural network outputs the localization and boundary of 

chickens on the picture – which can be transformed to their exact 3-dimensional location – as 

well as their kinematic structure. 

2.1. Annotation 

The annotation process plays a central role in the current research. Computer Vision Annotation 

Tool (CVAT.AI) was used as the primary tool for annotation. This framework can be used to 

create a dataset processable by the neural network (e.g., in a JSON-based format). CVAT.AI 

enables the production of multiple commonly used outputs (e.g., YOLO, COCO formats) that 

aid in further training the neural network of choice, especially in the initial development phase. 

Besides the typical manual annotation of datasets, CVAT.AI allows the automatic annotation 

of the datasets. This approach to annotation can use pre-trained networks (e.g., YOLO, Mask- 

RCNN trained on MS COCO). This ability refines the annotation process, possibly introducing 

the annotated dataset as an intermediate training dataset used by the automatic annotation. It 

should be highlighted that this process is ultimately supervised, and human actors can overrule 

the obtained results. Human supervision is particularly common during the initial training 

phase. The refined process is depicted in Figure 3. Automatic annotation is typically an offline 

task that does not require high-speed detection but higher accuracy. Therefore, networks that 

surpass YOLO in these performance indicators should be used (e.g., RetinaNet, MASK-RCNN) 

at the cost of slower but more reliable annotation. 
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Figure 3. Refined annotation process with automatic annotation (enabled by tools, e.g. CVAT.AI) 

3. Results and Discussion 

This section discusses the main results of our ongoing research: creating an initial dataset 

resulting from the methodology introduced in Section 2. 

3.1. Dataset creation 

In the 2.1. subsection, CVAT.AI has been identified as the primary tool of trade for annotation. 

LabelImg (LabelStudio) was used at the beginning of the work, but this tool seemed 

cumbersome and lacked features that helped the annotation process. Furthermore, the latest 

version, as of February 2024, was plagued by frequent crashes and performance problems such 

as indescribable high memory usage. LabelStudio also struggled to use any video created in 

any conventional – or even as a raw video – format and codec. For observation, a HIKVision 

camera was used, outputting videos in H.265 format at a framerate of 25 FPS and with a video 

resolution of 1080p. 

In comparison, CVAT.AI could be used without any reportable performance issue while 

providing conventional and valuable features such as automatic annotation, clear separation of 

detectable features, and layered hierarchical structure (handling kinematic pose notation, 

boundary boxes). Deployment is also based on Docker, providing a straightforward way to 

system deployment. Automatic annotation could also be used with pre-trained YOLO both on 

CPU and GPU, enabling possible deployment on a server system. Videos could also be used 

efficiently and have been treated as image sequences – some videos required proper closing 

video segments (due to streaming of videos). The computer that ran both annotation frameworks 

was a personal computer with a Ryzen 5 CPU, 32 GB memory, NVIDIA GTX 2070, and plenty 

of available hard disk space (around 4 TB) as configuration. The devices, dataset parameters, 

and configuration are listed in Table 1. The neural network training and the inference have also 

been partially migrated to the Hungarian Supercomputer, Komondor (KIFÜ) using a GPU 

supported container. This will eventually improve network training time significantly. 
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Table 1. Configuration used in the observation 

Parameter Value Purpose 

CPU (Annotation) Ryzen 5, 16 cores Annotation 

Memory 32 GB Annotation 

Storage 4 TB Annotation 

Annotation framework CVAT.AI Annotation 

h.265 Camera HIKVision, 25 FPS Observation 

Raw dataset size 30 GB Observation 

Dataset objects 
Hen, chicken, coop, waterbowl, 

                  cabin boundary  
Observation 

With these features, creating the dataset was agile. An average of 500 pictures could be 

manually annotated daily and two videos automatically. The review of automatic annotation 

results could be performed with similar performance. 

In the current, still rather initial phase, a video quantity of 30 GB has been used as a raw video 

source. This data amount was enough to produce some preliminary results: bounding boxes 

and some kinematic pose detection as well (depicted in Figure 4). Naturally, not all of the 

image frames were usable for annotation, and this made tracking particularly difficult due to 

the following problems: 

• Chickens follow a stochastic and highly unpredictable path, making tracking difficult. 

Therefore, automatic tracking results had to be overridden. 

• Chickens tend to stay in groups, therefore selecting the boundary of individual chickens 

is difficult, in some cases does not enable usable results. 

  
Figure 4. Annotation results (left: kinematic key points, right: bounding boxes for YOLO) 

3.2. Architecture design 

ChickTrack (Neethirajan, 2022) has been used as the reference architecture. During the 

research, some problems were identified with this network: 

• For the tracking of the chicken location in the picture, Kalman-filtering is used for 

prediction. As the chicken trajectory is highly unpredictable, this could be a problem. 

LSTM (Hochreiter and Schmidhuber, 1997) has been successfully used for stochastic 

sequences (e.g., texts, pose detection, waveform analysis). 
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• The backbone is not composed of ResNet (He et al., 2015), only PANet, which is an 

integral part of newer YOLO architectures. YOLO is an architecture consistently 

developing, with the latest version reaching the 10th iteration (Wang et al., 2024). ResNet 

could increase the accuracy of detection and tracking as well. 

• ChickTrack detects object boundaries and tracks simple vision features, but does not result 

in the kinematic state of individual chickens. 

The current research addresses these problems by extending YOLO architecture with a ResNet 

backbone and LSTM output for series detection to detect kinematic key points composing the 

kinematic skeleton (comparison in Figure 5). 

 

Figure 5. Comparison of neural architectures useful for tracking chicken behaviour (left: ChickTrack, right: 

current research) 

4. Conclusions 

In our study, the identification and localization of hens within the dataset have been 

accomplished, and the kinematic key points for motion skeleton recognition have been defined. 

The system's architecture has been formulated, and the essential infrastructure has been 

arranged. The dataset is set to expand to encompass kinematic skeleton identification. Presently, 

the annotation for the kinematic skeleton still needs to be completed. Evaluation is underway 

on neural networks suitable for kinematic skeleton detection. A tailored architecture is 

undergoing training and development. Comparisons are drawn with ChickTrack based on 

measurements. Our forthcoming agenda entails enhancing the dataset and the neural network 

architecture, followed by conducting tests on various architectures. 
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