
Georgikon for Agriculture  27 (2) 2023 

12 

Analysis of information content on hypertemporal UAV images 

Hipertemporális UAV felvételek információtartalmának elemzése 

Lóránt Biró 1*, József Berke 2, Kristóf Kozma-Bognár 3 and Veronika Kozma-Bognár2 

1 Budapest Business University, Faculty of Commerce, Hospitality and Tourism, biro.lorant@uni-bge.hu 

2 Dennis Gabor University, Drone Technology and Image Processing Scientific Lab; 

kozma.bognar.veronika@gde.hu, berke.jozsef@gde.hu 

3Hungarian University of Agriculture and Life Sciences, Festetics György Doctoral School 

*Correspondence: biro.lorant@uni-bge.hu 

Abstract: Today, the data provided by drones extremely useful information for professionals. 

The processing of large data sets collected by UAVs, on the other hand, may require different 

methodological elements based on the properties of the sensors placed in each camera system. 

The sensors placed on the carrier devices can significantly influence not only the collection of 

data, but also the evaluations appropriate for the given purpose. The data sets created by the 

sensors can be characterized by different geometric, spectral and temporal resolutions for each 

camera system. We can characterize the information content of the spectral layers of the Bayer-

type CFA filter (Color Filter Array) and Global Shutter sensors by calculating information-

theoretic entropy. If we have different spectral, geometric, and temporal data series available 

after the recording, the processing can be done by processing the data series separately or 

together. In the case of aerial photographs with different characteristics, data fusion procedures 

can also be used in the data processing process, which poses many challenges for remote 

sensing specialists. Properly performed data fusion can further increase the potential of the data. 

In our article, we present the information content-based processing of our environmental 

protection aerial surveys carried out in the sample area of Kis-Balaton. During image 

processing, we performed geodesic-based and pattern-matching-based integration of the data, 

the results of which are also presented with an entropy-based analysis of the images. We 

extended our investigations to the most frequently used image classification procedures in 

practice, and we also present the analysis of the error matrices related to the analysis of the 

result images of the procedures and the obtained Kappa indices. All of these were done in the 

manner described above because they do not require unique solutions and farmers, or users can 

do them even with basic knowledge. 

Keywords: UAV, hypertemporal, multispectral, plant protection, classification 

Összefoglalás: Napjainkban a drónok által szolgáltatott adatok rendkívül hasznos 

információkat szolgáltatnak a szakemberek számára. A UAV-k által gyűjtött nagy méretű 

adatsorok feldolgozása viszont eltérő módszertani elemeket igényelhetnek az egyes 

kamerarendszerekben elhelyezett érzékelők tulajdonságai alapján. A hordozó eszközökön 

elhelyezett érzékelők nemcsupán az adatok gyűjtését, hanem az adott célnak megfelelő 

kiértékeléseket is jelentősen befolyásolhatják. Az érzékelők által létrehozott adatsorokat az 

egyes kamerarendszerekre vonatkozóan eltérő geometriai, spektrális és időbeli felbontás 

jellemezheti. Információelméleti entrópia számításával jellemezhetjük a Bayer típusú, CFA 

filtert tartalmazó (Color Filter Array) és a Global Shutter érzékelők spektrális rétegeinek 
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információtartalmát. Amennyiben a felvételezést követően eltérő spektrális, geometriai és 

időbeli adatsorok állnak rendelkezésünkre, a feldolgozás történhet az adatsorok külön-külön 

vagy ezek együttes feldolgozásával. Az eltérő tulajdonságú légifelvételek esetében az 

adatfeldolgozás folyamatában adatfúziós eljárásokat is alkalmazhatunk, mely számos kihívást 

jelent a távérzékeléssel foglalkozó szakemberek számára. A megfelelően elvégzett adatfúzió 

tovább növelheti az adatokban rejlő lehetőségeket. Cikkünkben bemutatjuk a Kis-Balaton 

mintaterületén végzett, környezetvédelmi célú légifelvételezéseink információtartalom alapú 

feldolgozását. A képfeldolgozás során elvégeztük az adatok geodéziai alapú és mintaillesztés 

alapú integrálását, melynek eredményeit a felvételek entrópia alapú elemzésével is bemutatjuk. 

A vizsgálatainkat kiterjesztettük a gyakorlatban leggyakrabban alkalmazott képosztályozó 

eljárásokra is, továbbá bemutatjuk az eljárások eredményképeinek elemzéséhez kapcsolódó 

hibamátrixok elemzését és a kapott Kappa-indexeket. Mindezeket azért végeztük a fentiekben 

ismertetett módon, mert nem igényelnek egyedi megoldásokat és a gazdák vagy felhasználók 

alapismeretek mellett is elvégezhetik. 

Kulcsszavak: drón, hipertemporális, multispektrális, növényvédelem, osztályozás 

1. Introduction 

Light is electromagnetic radiation that can be broken down into different wavelength ranges. In 

the VIS (Visible, i.e., red [R], green [G], blue [B]) range, the colour bodies found in the 

vegetation are primarily reflected, meaning that the condition of the vegetation can be well 

examined with this range. The NIR (Near Infrared) range is generally used in agriculture for 

testing the fitness status of vegetation, similarly to the RedEdge band, but the latter is not 

sensitive to atmospheric conditions and soil reflectance but is sensitive to canopy characteristics 

and on the chlorophyll content (Clevers et al., 2001; Kozma-Bognár, 2012). 

A non-negligible question of spectral tests is how many channels, i.e. bands, the used sensor 

can simultaneously record at a moment in time. From this point of view, we distinguish between 

multi- and hyperspectral recording. The difference between the two methods is on the one hand 

in the number of simultaneously recorded bands (multispectral: 4-20 bands, hyperspectral: >20 

bands; Council of the European Union, 2009), and on the other in the width of the band ranges. 

In the case of the multispectral method, the bandwidths are usually large (50-120 nm), while in 

the case of hyperspectral recording they are much smaller, even 1 nm (Kozma-Bognár, 2012). 

As a result, the spectral resolution of the images is also much higher in the case of hyperspectral 

images, since the spectrum is continuous, while with the multispectral method the resulting 

spectrum consists of discrete band ranges. 

While the use of hyperspectral sensors is common in satellite remote sensing (Bácsatyai and 

Márkus, 2001; Mucsi, 2013; Lillesand et al., 2015), it is not yet widespread in drone technology. 

This is due to the high cost and weight of hyperspectral camera systems on the one hand, and 

the limited size of the payload that drones can carry on the other. Despite this, more and more 

manufacturers are developing ever smaller size and weight hyperspectral camera systems that 

can be mounted on UAVs (Unmanned Aerial Vehicles, i.e., "drone"), thanks to their wide 

applicability - and their more cost-effective use compared to satellites (Adão et al., 2017; Nex 

et al., 2022). In contrast, many manufacturers currently produce high-quality multispectral 

camera systems especially for UAVs (e.g., Micasense, Parrot, Sentera, Yusense), which usually 

contain 6 channels: in addition to RGB, RedEdge (~717 nm) and NIR (~842 nm) bands. 

Using RGB and/or RedEdge, as well as the NIR range, several indices have been created, 

which are primarily used to examine vegetation (Lussem et al., 2018; Solymosi et al., 2019; 

Feng et al., 2021). The scope of the study does not allow for a detailed presentation of the 
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indices, so only the NDVI and NDRE indices need to be mentioned due to the methodology 

used. 

Both the normalized red border index (NDRE; 1) and the normalized vegetation index 

(NDVI; 2) provide information on the health status, or fitness, of the vegetation. While the 

NDVI index considers the R (i.e., red) band, the NDRE index uses the RedEdge band instead 

of the R band based on the following formula: 

NDRE = (NIR - RedEdge) / (NIR + RedEdge)  (1) 

NDVI = (NIR - RED) / (NIR + RED)  (2) 

In the case of certain plants (e.g., corn), in the late life stage, the upper leaves absorb more 

of the red-light range, so the lower leaves do not contribute to the calculation of the NDVI 

index, i.e., the index will not show the real state. This is eliminated by the NDRE index, by 

calculating with the RedEdge band instead of the red band, since the light range is utilized to 

the same extent by the lower leaves of the plant, so the calculated NDRE index will already 

show a real picture (Carlson and Ripley, 1997; Maccioni et al., 2001). 

By the temporal resolution of the image recordings, we mean the frequency of image 

creation. Like spectral resolution, multi- and hyper-temporal recording can also be 

distinguished in this case. Both cases have in common that the frequency of recording is much 

higher than the sampling frequency required for observing temporal processes – i.e., half the 

frequency of the examined temporal process (Shannon theorem: Shannon, 1948). Time is the 

fourth dimension; it differs from the x, y, z (spatial) dimensions in that it is asymmetric – that 

is, it only flows in one direction – and is difficult to imagine (we see the effects of the passage 

of time, but do not perceive it directly; Piwowar et al. 1998). The difference between the multi- 

and hypertemporal methods is the frequency of recording. There is no unified position regarding 

the frequency, for example Kleynhans (2011) draws the line between multi- and hypertemporal 

recording at a frequency of 8-30 days. Based on the recommendation of Piwowar et al. (1998), 

multitemporal data can be processed if the following three requirements are met: 

1. It should be univariate (recording of the same parameter at different times). 

2. Include time slices, each of which contains the same area (image pixels and resolution 

must match perfectly). 

3. They should be radiometrically consistent (i.e., the images should be made with the same 

sensors). 

In our opinion, the above can be completed with general user knowledge. However, as 

previously highlighted - Enyedi et al. (2016) and Vastag et al. (2019), in the case of devices 

where we work with sensors that do not contain discrete bands, and a significant part of the VIS 

sensors of UAV devices contain such, i.e., Bayer-type sensors, the actual data content of the 

image and its reliability are determined by the imaging algorithms. However, these differences 

can even exceed 100% - Enyedi et al. (2016). These data cannot be improved with subsequent 

(geometric, atmospheric or radiometric) corrections either, as they are procedures prior to their 

implementation. If, on the other hand, we create a single image band from the data of the entire 

Bayer sensor, then the data can be corrected, but we cannot create indexes, and most known 

classification methods cannot be used because of the single band. After taking the above into 

account, as well as comparing discrete-non-discrete sensors, we worked on the basis of 

reflectance values during the tests. 
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2. Materials and Methods 

2.1. Presentation of applied technology 

The images were made with a DJI Phantom 4 rotary-wing quadcopter drone, the camera 

parameters of which are as follows: 

• Camera type: FC300X 

• Sensor type: Sony EXMOR 1/2.3" 

• Effective pixel: 12.4 M 

• Image size: 4000 x 3000 px 

• FOV: 94° 

• Focal length: 20 mm 

• Aperture: f/2.8 

• Shutter speed: 8-1/8000 s 

The Phantom 4 type drone only has an RGB sensor, however, the Sentera company produces 

accessories that can be used to connect various Sentera camera systems to DJI drones. Thus, 

two types of Sentera camera systems can be connected to the used Phantom 4 drone, with which 

either NDVI vegetation index (includes 625 nm red and 850 nm NIR band) or NDRE index 

(720 nm RedEdge and 840 NIR) in addition to NDVI the camera can record. Thus, recording 

will not be single axis, but RGB on a separate axis and NDVI and/or NDRE on a separate axis. 

The latter, i.e., the "dual" NDVI, NDRE camera system, was connected to the Phantom 4 drone, 

so the drone took NDVI and RE (only RedEdge instead of NDRE index) images of the area at 

the same time in addition to RGB images. 

2.2. Presentation of study area 

The investigated area is located on the Kis-Sziget of the Zimány part of the Kis-Balaton 

landscape, which is no longer an independent island and has an area of ~4200 m2 (Figure 1). 

Kis-Balaton itself is part of the Balaton Uplands National Park, which is highly protected, so 

you can only enter with a permit. The area - together with Lake Balaton - forms an independent 

ecological system, which is also unique in the world, and even enables the temporal 

examination of vegetation changes caused by climate change (Soós et al., 2014). Thus, the 

monitoring of vegetation with a UAV is increasingly becoming an indispensable method for 

research in this direction. 

3. Applied methodology 

The images were made with the DJI Phantom 4 drone mentioned in the previous chapter and 

its FC300X type RGB camera (resolution is 1969 x 4879), and the NDVI and RedEdge images 

(resolution is 2271 x 5619) were made with an NDVI, NDRE, RedEdge camera (Sentera 

Double 4K True) located on a separate axis – that is, as a kit that can be installed on the Phantom 

4 drone. The images were taken in the year 2020, with an average frequency of 12 days, at the 

same time of the day, at an altitude of 100 m, and of course always from the same area. The 

dates are as follows: January 2, 15, 26, February 14, 29, March 10, 27, April 8, 18, 26, May 8, 

18, 30, June 13, 24, July 6, 19, 30, August 9, 20, September 2, 11, 22, October 1, 19, 27, 

November 1. The images were taken by flying on the same route, during which average VIS – 

44.08±1.19, NDVI – 22.81±1.62, RE – 22.78±1.67 images were taken. The images were taken 

with 70%/80% (Side/Frontal) overlap. The difference in the number of images between the two 

cameras was mainly caused by the different viewing angle, while the difference between the 



Georgikon for Agriculture  27 (2) 2023 

16 

flight times was due to the different weather conditions. The images were aligned with the 

Agisoft PhotoScan 1.4.3 program with factory default settings, separately for the RGB and 

separately for the Sentera sensor, image alignment - dense cloud – DEM - Orthophoto in order.  

The photos taken (3 channels, counting 27 times, a total of 81 image files) were taken in raw, 

i.e., RAW (36-bit) format, which were converted into the lossless 16-bit TIFF image format, 

which is also lossless, but more suitable for further processing. After the conversion, the images 

were joined by channel, that is, the RGB, NDVI and RedEdge images were copied into one 

image file. We separated the RGB images based on the three bands (red, green, blue), so we 

created three more new image files, so a total of six new files were available, which contain 27-

27 channels, where one channel means one image, following each other in chronological order. 

In other words, the images belonging to the same band were copied "to each other", so 27-

channel TIFF images were created, where one channel represented one recording. In this case, 

the sequence lasted from 01/02/2020 to 11/01/2020, but from the point of view of the method, 

it does not matter which time (channel) is visible, that is, which recording is in the top position 

of the data cube. 

The TIFF files joined by bands were further processed with ENVI (5.6.2) software, where 

the main purpose of the processing was the classification of the joined image files by bands. 

Since the classification was done using supervised methods, the first step was to select the 

known areas, i.e., the ROIs (Region of Interest). During the designation, we separated four types 

of vegetation: tall golden cane, sedge, reed, and shrub. Variations caused by phenological 

phases were not investigated in this work. In the sedge-reed areas, this is justified, but neither 

farmers/professionals with general preparation nor the factory-provided software solutions 

currently allow this. The tall golden cane and shrub parts were clearly separated in the area. 

After the designation of the ROIs, the classification followed, for which we used two 

methods, the Maximum Likelihood (ML) and the Spectral Angle Mapper (SAM) method. 

Based on experience, Maximum Likelihood results in the most accurate classification, while 

the Spectral Angle Mapper method is effective when there are relatively many shadows in the 

image (Schowengerdt, 1997; Kozma-Bognár, 2012,). The prepared image files (RGB, NDVI, 

RE) (images from 27 to 27 times) were classified using the above two supervised methods. 

We analysed the Overall Accuracy, which can be expressed as several pixels per image or as 

a percentage. When examining the accuracy of the results, it is also appropriate to compare the 

Commission/Omission and Producer Accuracy/User Accuracy values (Appendix 1.), and to 

consider the Kappa coefficient, which is an indicator of the match between the classification 

and the real values. A Kappa value of 1 indicates a perfect match, while a value of zero indicates 

no match (Richards-Jia, 2005). Table 2 summarizes the hit accuracies and Kappa values 

associated with each classification procedure. We created an error matrix to check the created 

classes, so it is possible to objectively compare the results of the classification of each band, 

and the matrix also reveals the relationships between the classes (Kevi, et al. 2023). For the 

objective evaluation of the error matrices, we used a multivariate statistical method - cluster 

analysis. 

To examine the information content of each band, Shannon's entropy was calculated for each 

band at each time point (Shannon, 1948). With the help of this, it is possible to clearly see which 

band contains the largest information content (thus the most colour shades, which are important 

during classification), i.e., which band has the highest entropy value. 
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Figure 1. Location of the study area (Kis-Sziget: red dotted area, projection WGS84) 

The vegetation of the area is characterized by sedges, reeds, and tall goldenrod, which is of 

adventitious North American origin, while the woody vegetation is mainly composed of various 

willows. These four vegetation types completely cover the investigated area, which can be 

separated from each other spectrally (VIS + NIR) and represent discrete pixels based on the 

resolution of the recordings. In terms of vegetation, the biggest problem is the presence and 

expansion of tall goldenrod. This weed species is characterized by the fact that, relatively 

quickly, it can form stable closed stands with few species in just four years, displacing the 

original, site-specific plant types (Pinke and Pál, 2005). 

4. Results, evaluation 

4.1. Comparison of classification methods 

Comparing the image results of the classifications is difficult to perform and can lead to 

subjective interpretation, so the differences can be seen objectively on the error matrices. From 

both the classified images and the error matrices - as well as from Table 1 - the Maximum 

Likelihood (ML) method generally performed better than the Spectral Angle Mapper (SAM) 

method (see Appendix 1. for the Commission/Omission and Producer Accuracy/User Accuracy 

values). This is most striking when examining the aggregate accuracy values of the bands. 
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Table 1. Overall accuracy and Kappa coefficient of classes by band and method 

Band Method Overall Accuracy Kappa Coefficient  

RGB 
Maximum Likelihood 48.60 0.30 

 

Spectral Angle Mapper 40.64 0.18 
 

R 
Maximum Likelihood 82.67 0.76 

 

Spectral Angle Mapper 53.84 0.38 
 

G 
Maximum Likelihood 87.16 0.82 

 

Spectral Angle Mapper 60.09 0.46 
 

B 
Maximum Likelihood 79.56 0.72 

 

Spectral Angle Mapper 52.96 0.37 
 

RedEdg

e 

Maximum Likelihood 33.94 0.09 
 

Spectral Angle Mapper 26.24 0.02 
 

NDVI 
Maximum Likelihood 37.94 0.13 

 

Spectral Angle Mapper 36.09 0.09 
 

If we compare the values of the individual groups within the bands, it is mostly significant only 

in the case of the R, G, B bands that the ML method gives better results than the SAM method. 

This statement is not entirely true for the classification results of the RGB, RE (RedEdge) and 

NDVI bands, it is also clearly visible from the comparison of the values of the aggregated 

accuracy. 

 
Figure 2. Entropy values per band of RGB images 

Overall, the classification of the G (green) band using the ML method gave the most accurate 

results, although based on the entropy of the bands, the red band contains the most information 

(Figure 2), while the worst parameters were given by the classification of the RE band using 
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the SAM method. In terms of the classes, the golden point, which is important for the tests, can 

best be observed by classifying the G (green) band with the ML method. 

4.2. Interpretation of results 

It helps to interpret the results if we can decide whether the result is acceptable or not for a 

group classified with a specific band and method. In the previous chapter, we presented the 

results classified by the given method and band based on accuracies, so it can be said for each 

group whether the result is adequate or not. This evaluation - that is, whether a group is "good" 

or not - can also be examined objectively, namely with a multivariate statistical method, 

clustering. In this case, we know the producer's and user's accuracy, the probability of 

commission and omission from the class for each group. These provide the input data of the 

method, based on which we want to classify the group into reliable and unreliable categories, 

that is, we want to classify them into 2 clusters (k-means clustering). 

As a result of the clustering, two groups were created, the general parameter values of which 

are shown in Table 2. Group 1 contains the band/method/ROI combinations that lead to bad 

results, since their accuracy is low (<37%), but the probability of commission and omission is 

high (>63%). On the other hand, Group 2 contains those band/method/ROI combinations that 

gave good results, as their accuracy is high (>75%) and the probability of commission and 

omission is low (<25%). 

Table 2. Average parameter values of two groups obtained as a result of clustering 

Group / Parameter Producer’s accuracy User's accuracy Commission Omission 

Group 1. 35.6 37.4 62.6 64.4 

Group 2. 81.4 75.4 24.6 18.7 

An important question is which band/method combinations belong to the identified groups, 

since this way it is possible to specify which of the above combinations should be used later, if 

we want to use hypertemporal images for classification. Figure 3 helps in this, based on which 

the above question can be clearly answered, so if we want to achieve adequate accuracy, one of 

the bands R, G, B must be used and classified using the Maximum Likelihood method. The 

reason for the accuracy of these three bands is probably the change in the green and red 

pigments of the vegetation during the vegetation period, the effect of which is reflected in the 

variance of the RGB values of the pixels - this is also shown by the entropy of the bands over 

time (Figure 2). This assumption is further supported by Figure 3, which shows that the 

classification of the images of the G (green) band gives the most accurate results. 

In the case of the "underpowered" bands (RGB, RE, NDVI), a probable error factor may be 

that the RE, NDVI images were not located on the same axis as the other RGB, R, G, B bands. 

This also resulted in slips occurring between the images (the slippage of successive images at 

the same time was below 0.25%, but this error increased during the joint matching of the entire 

images recorded at 27 times), i.e., the area was not the same for every image (the resolution, of 

course, did not change). These slippages could also cause classification inaccuracies. However, 

the inaccuracy of the RGB images is certainly surprising, and the solution to this question 

requires further investigations. 
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Figure 3. Composition of groups obtained as a result of clustering based on band/method combinations 

5. Conclusions 

Based on the conclusions drawn so far, it can be stated that RGB sensors are also partially 

suitable for vegetation monitoring studies using multitemporal images, namely, by evaluating 

the R band, adequate accuracy can be achieved, especially if the classification is carried out 

using the Maximum Likelihood method. It is important to point out that a perfect result can 

only be obtained by processing the panchromatic - that is, the images read directly from the 

sensor. The pixel values of RGB images contain data loss compared to the original recording, 

the extent of which we can only estimate, but this must be considered during interpretation. 

When applying the methodology, it is worth paying attention to the recording of which time 

the topmost layer of the data cube contains, since this recording will be classified during 

processing. Of course, this also gives the possibility that if the recording of the data cube made 

at any time is placed in the top position, i.e., on the very first channel, then this recording is 

classified using the images made at all other times. In fact, this is where the efficiency of the 

method lies, that is, the classification is done using the images always made, so we get the most 

accurate classification possible (with the selection of the appropriate method). 

When pre-processing the data, care must also be taken to ensure that the images are always 

taken from the same height and from the same area. In the case of multi-axis recording, this 

requirement is not fully met, so inaccuracies may occur during the classification (especially in 

the case of the SAM method), so it is more desirable to take single-axis images (e.g., using 

multitemporal sensors). 

As a continuation of the work, after the methodological evaluation, it may be worthwhile to 

classify the images using the Maximum Likelihood method of the R band in such a way that 

the uppermost channel of the data cube is always a recording from a new time. In this way, a 

time series would essentially be created, with the help of which you can see the territorial 

changes of the goldenrod during the investigated vegetation period. This can lay the foundation 

for further nature conservation and intervention tasks, which would enable protection against 

the aggressively expanding adventive vegetation (in this case, tall goldenrod) within the 

territory of the Balaton-felvidéki National Park. 
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Appendix 1. Commission/Omission and Producer Accuracy/User 

Accuracy values of the ROI’s 

Blue - Maximum Likelihood 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 71,17 72,04 27,96 28,83 
 

Sedges 70,40 77,25 22,75 29,60 
 

Goldenrod 90,26 86,32 13,68 9,74 
 

Bush 88,05 80,27 19,73 11,95 
 

Blue - Spectral Angle Mapper 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission  

Reeds 55,47 43,49 56,51 44,53 
 

Sedges 34,56 53,20 46,80 65,44 
 

Goldenrod 53,20 60,04 39,96 46,80 
 

Bush 82,35 55,26 44,74 17,65 
 

 

  

Green - Maximum Likelihood 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 82,25 74,72 25,28 19,75 
 

Sedges 81,00 85,91 14,09 19,00 
 

Goldenrod 94,28 94,33 5,67 5,72 
 

Bush 94,45 92,90 7,10 5,55 
 

Green - Spectral Angle Mapper 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 61,79 45,59 54,41 38,21 
 

Sedges 33,28 58,81 41,19 66,72 
 

Goldenrod 76,09 66,08 33,92 23,91 
 

Bush 79,60 71,55 28,45 20,40 
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RedEdge - Maximum Likelihood 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 34,26 34,58 65,42 65,74 
 

Sedges 12,52 37,46 62,54 87,48 
 

Goldenrod 73,23 33,99 66,01 26,77 
 

Bush 7,37 24,13 75,87 92,63 
 

RedEdge - Spectral Angle Mapper 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 33,50 21,10 78,90 66,50 
 

Sedges 40,97 34,82 65,18 59,03 
 

Goldenrod 1,63 26,52 73,48 98,37 
 

Bush 31,95 20,72 79,28 68,05 
 

 

 

Red - Maximum Likelihood 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 72,28 69,44 30,56 27,72 
 

Sedges 76,85 80,99 19,01 23,15 
 

Goldenrod 91,61 90,63 9,38 8,39 
 

Bush 90,44 88,17 11,83 9,56 
 

Red - Spectral Angle Mapper 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 53,90 39,50 60,50 46,10 
 

Sedges 25,66 54,14 45,86 74,34 
 

Goldenrod 70,40 60,83 39,17 29,60 
 

Bush 76,79 61,18 38,82 23,21 
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RGB - Maximum Likelihood 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 16,14 37,61 62,39 83,86 
 

Sedges 39,82 57,34 42,66 60,18  

Goldenrod 76,86 48,99 51,01 23,14 
 

Bush 55,56 43,62 56,38 44,44 
 

RGB - Spectral Angle Mapper 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 19,86 23,51 76,49 80,14 
 

Sedges 52,27 49,95 50,05 47,73 
 

Goldenrod 57,18 46,61 53,39 42,82 
 

Bush 16,96 23,36 76,64 83,04 
 

 

 

NDVI - Maximum Likelihood 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 5,14 24,86 75,14 94,86 
 

Sedges 58,69 41,83 58,17 41,31 
 

Goldenrod 49,05 39,07 60,93 50,95 
 

Bush 20,90 26,62 73,38 79,10 
 

NDVI - Spectral Angle Mapper 

Class 
Producer 

Accuracy 

User 

Accuracy 
Comission Omission 

 

Reeds 6,75 21,44 78,56 93,25 
 

Sedges 55,03 40,14 59,86 44,97 
 

Goldenrod 53,25 37,13 62,87 46,75 
 

Bush 8,32 19,63 80,37 91,68 
 

 


