Correlation of secondary salinization and soil conditioning in vegetable production under irrigation with saline water

Authors

  • Arzu Rivera-García Kálmán Kerpely Doctoral School, University of Debrecen, 4032 Debrecen, Böszörményi út 138., Hungary; Research Institute of Karcag, Hungarian University of Agriculture and Life Sciences, 5300 Karcag, Kisújszállási út 166. Hungary, e-mail: arzu89@agr.unideb.hu https://orcid.org/0000-0002-3074-6132
  • Géza Tuba Hungarian University of Agriculture and Life Sciences, Research Institute of Karcag, e-mail: tuba.geza@uni-mate.hu https://orcid.org/0000-0001-7356-4729
  • Györgyi Kovács Hungarian University of Agriculture and Life Sciences, Research Institute of Karcag, e-mail: kovacs.gyorgyi@uni-mate.hu https://orcid.org/0000-0001-9792-440X
  • Lúcia Sinka Kálmán Kerpely Doctoral School, University of Debrecen, 4032 Debrecen, Böszörményi út 138., Hungary; Hungarian University of Agriculture and Life Sciences, Research Institute of Karcag, e-mail: sinka.lucia@uni-mate.hu https://orcid.org/0000-0002-3724-3861
  • József Zsembeli Kálmán Kerpely Doctoral School, University of Debrecen, 4032 Debrecen, Böszörményi út 138., Hungary; Research Institute of Karcag, Hungarian University of Agriculture and Life Sciences, 5300 Karcag, Kisújszállási út 166. Hungary, e-mail: zsembeli.jozsef@uni-mate.hu https://orcid.org/0000-0003-1958-2584

DOI:

https://doi.org/10.18380/SZIE.COLUM.2022.9.2.35

Keywords:

electric conductivity, soil moisture content, soil conditioners, salt tolerance, secondary salinization

Abstract

Secondary salinization is a main problem around the world due to climate change and intrusion of salts in the soil by improper irrigation. Our aim was to study the soil salinization process by simulating vegetable production under irrigation with saline water (total soluble salt content ⁓700 mg L-1). We tested 6 different technologies of soil conditioner application and 3 vegetable crops with different sensitivity to salinity in a small plot experiment set up on a meadow chernozem soil. During the irrigation season in 2020, we regularly measured the electric conductivity (ECa) and the soil moisture content (v/v%) in the topsoil (0.1 m) and analysed these parameters with Pearson’s bivariate correlation method. As our hypothesis, we expected that there is correlation (PCC) among ECa, soil moisture content, soil conditioning, and providing the possibility to quantify the secondary salinization process. We found that all the 4 biosynthetic soil conditioners technologies minimized the harmful effect of saline irrigation. In the case of the not salt tolerant (NT) peas, the PCC correlation was higher to compost application and control expressing more intense salinization. NT beans showed a weaker correlation with lower PCCs, which must be due to its higher root activity leading to intensive leaching resulting in a lower degree of salinization. In the case of chilli with low salt tolerance (LT), micro dosing of soil conditioners was not effective in mitigating the harmful effect of secondary salinization, only full doses decreased the PCC. The salt tolerance of the investigated vegetable crops was also manifested in the yields. We found that PCC is a suitable statistical method to understand and quantify the process of secondary salinization.

Author Biography

  • Arzu Rivera-García, Kálmán Kerpely Doctoral School, University of Debrecen, 4032 Debrecen, Böszörményi út 138., Hungary; Research Institute of Karcag, Hungarian University of Agriculture and Life Sciences, 5300 Karcag, Kisújszállási út 166. Hungary, e-mail: arzu89@agr.unideb.hu

    corresponding author

References

Balusson, H. (2018). The power of algae, serving the planet. Retrieved from https://www.olmix.com/sites/default/files/brochure.olmix_group.corporate.en.pdf

Ben-Gal, A., Ityel, E., Dudley, L., Cohen, S., Yermiyahu, U., Presnov, E., . . . Shani, U. (2008). Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers. Agricultural Water Management 95(5), 587-597. doi: https://doi.org/10.1016/j.agwat.2007.12.008

Bergström, L. (1990). Use of lysimeters to estimate leaching of pesticides in agricultural soils. Environmental Pollution 67(4), 325-347. doi: https://doi.org/10.1016/0269-7491(90)90070-S

Bower, C. (1959). Chemical Amendments. Agriculture Information (Tech. Rep. No. Bulletin no. 195). United States Department of Agriculture.

Burt, C. M., & Isbell, B. (2005). Leaching of accumulated soil salinity under drip irrigation. Transactions of the ASAE 48(6), 2115–2121.

Dudley, L. M., Ben-Gal, A., & Shani, U. (2008). Influence of plant, soil, and water on the leaching fraction. Vadose Zone Journal 7(2), 420-425.

Foth, H. D., & Turk, L. M. (1972). Fundamentals of soil science (5th ed.). New York: John Wiley & Sons.

Gadissa, T., & Chemeda, D. (2009). Effects of drip irrigation levels and planting methods on yield and yield components of green pepper (Capsicum annuum, L.) in Bako, Ethiopia. Agricultural Water Management 96(11), 1673-1678. doi: https://doi.org/10.1016/j.agwat.2009.07.004

Giacomini Sari, B., Dal’Col Lúcio, A., Souza Santana, C., Ketzer Krysczun, D., Luís Tischler, A., & Drebes, L. (2017). Sample size for estimation of the pearson correlation coefficient in cherry tomato tests. Ciência Rural 47(10), 1-6.

Grattan, S., & Grieve, C. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae 78(1), 127-157. doi: https://doi.org/10.1016/S0304-4238(98)00192-7

Hewitt, E. J., & Smith, T. A. (1975). Plant Mineral Nutrition. London: Hodder & Stoughton Ltd.

Juhasz, C., Blasko, L., Karuczka, A., & Zsembeli, J. (1997). Environmental effect of drain waters from heavy textured soils. Rostlinna Vyroba-UZPI (Czech Republic) 43(2), 87-94.

Kovács, G., Tuba, G., Czimbalmos, R., & Csízi, I. (2013). Effect of different compost doses on some properties of an extensive grassland soil. Research Journal of Agricultural Science 45(2), 157–165.

Kumar, M., Giri, V. P., Pandey, S., Gupta, A., Patel, M. K., Bajpai, A. B., ... Siddique, K. H. M. (2021). Plant-Growth-Promoting Rhizobacteria Emerging as an Effective Bioinoculant to Improve the Growth, Production, and Stress Tolerance of Vegetable Crops. International Journal of Molecular Sciences 22(22), 12245. doi: https://doi.org/10.3390/ijms222212245

Kumari, K., Khalid, Z., Alam, S. N., Sweta, Singh, B., Guldhe, A., . . . Bauddh, K. (2020). Biochar Amendment in Agricultural Soil for Mitigation of Abiotic Stress. In K. Bauddh, S. Kumar, R. Singh, & K. J. (Eds.), Ecological and practical applications for sustainable agriculture (pp. 305– 344). Springer Singapore. doi: https://doi.org/10.1007/978-981-15-3372-3_14

Liu, A., Qu, Z., & Nachshon, U. (2020). On the potential impact of root system size and density on salt distribution in the root zone. Agricultural Water Management 234(1), 106118.

Martinez, V., Cerda, A., & Fernandez, F. G. (1987). Salt tolerance of four tomato hybrids. Plant and Soil 97(2), 233-241. doi: https://doi.org/10.1007/bf02374946

Mekonnen, H., & Kibret, M. (2021). The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chemical and Biological Technologies in Agriculture 8(1), 15. doi: https://doi.org/10.1186/s40538-021-00213-y

Minhas, P., Ramos, T. B., Ben-Gal, A., & Pereira, L. S. (2020). Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management 227(1), 105832. doi: https://doi.org/10.1016/j.agwat.2019.105832

Monori, I., Blaskó, L., Zsigrai, G., & Biró, B. (2009). TERRASOL compost from sheep ma- nure. In V. Kotuev (Ed.), Potential for simple technology solutions in organic manure management. 13th ramiran international conference 2008. 06. 28-30. (p. 421-424). Albena, Bulgaria.

Muhammad, A., Hamaad, R., Mujahid, A., Muhammad, R., Shafaqat, A., Muhammad, Z., . . . Aisha, A. (2020). Salinity and its tolerance strategies in plants. In K. Durgesh et al. (Eds.), Plant life under changing environment (p. 47-76). Cambridge, Massachusetts: Academic press.

Nemenyi, A., Andryei, B., Horváth, K. Z., Duah, S. A., Takács, S., Égei, M., & Szuvandzsiev, P. (2021). Use of plant growth promoting rhizobacteria (PGPRs) in the mitigation of water deficiency of tomato plants (Solanum lycopersicum L.). Journal of Central European Agriculture 22(1), 167- 177. doi: https://doi.org/10.5513/jcea01/22.1.3036

Pereira, L., Duarte, E., & Fragoso, R. (2014). Water Use: Recycling and Desalination for Agriculture. In N. K. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (p. 407-424). Oxford: Academic Press. doi: https://doi.org/10.1016/B978-0-444-52512-3.00084-X

Rasool, S., Hameed, A., Azooz, M. M., u Rehman, M., Siddiqi, T. O., & Ahmad, P. (2012). Salt Stress: Causes, Types and Responses of Plants. In Ecophysiology and responses of plants under salt stress (p. 1-24). Springer New York. doi: https://doi.org/10.1007/978-1-4614-4747-4_1

Reeve, R. C., & Fireman, M. (1967). Salt Problems in Relation to Irrigation. In R. Hagan, H. Haise, & T. Edminster (Eds.), Irrigation of agricultural lands (p. 988-1008). John Wiley & Sons, Ltd. doi: https://doi.org/10.2134/agronmonogr11.c56

Rhoades, J., Lesch, S., LeMert, R., & Alves, W. (1997). Assessing irrigation/drainage/salinity management using spatially referenced salinity measurements. Agricultural Water Management 35(1), 147-165. doi: https://doi.org/10.1016/S0378-3774(97)00017-6

Rivera Garcia, A., Tuba, G., Czellér, K., Kovács, G., & Zsembeli, J. (2020). Mitigation of the effect of secondary salinization by micro soil conditioning. Acta Agraria Debreceniensis 9(1), 115-119. doi: https://doi.org/10.34101/actaagrar/1/3720

Robin, A. H. K., Matthew, C., Uddin, M. J., & Bayazid, K. N. (2016). Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. Journal of Experimental Botany 67(12), 3719-3729. doi: https://doi.org/10.1093/jxb/erw064

Sadras, V., Alston, J., Aphalo, P., Connor, D., Denison, R. F., Fischer, T., ... Wood, D. (2020). Making science more effective for agriculture. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 163, p. 153-177). Academic Press. doi: https://doi.org/10.1016/bs.agron.2020.05.003

Shannon, M., Grieve, C., & Francois, L. (1994). Whole-plant response to salinity. In R. Wilkinson (Ed.), Plant-environment interactions. New York: Dekker.

Sinka, L., Rivera-Garcia, A., Tuba, G., & Zsembeli, J. (2019). Mitigation of salt stress caused by secondary salinization. In J. Kuruc (Ed.), Xx. stiavnické dni 2019 – zborník recenzovaných príspevkov (pp. 254–262). Banská Štiavnica.

Smedema, L. K., & Shiati, K. (2002). Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrigation and Drainage Systems 16(2), 161-174. doi: https://doi.org/10.1023/a:1016008417327

Szűcs, L., Tuba, G., Czimbalmos, R., & Zsembeli, J. (2015). A PRP-SOL talajkondicionáló szer hatása a talaj hidraulikus tulajdonságaira hagyományos és redukált talajművelési rendszerekben. In B. Madarász (Ed.), Környezetkímélő talajművelési rendszerek Magyarországon (p. 111-121). Budapest: MTA CSFK FTI.

Szu ̋cs, L., Tuba, G., & Zsembeli, J. (2014a). Effect of PRPSOL soil conditioner on the physical status of the soil in conventional and reduced tillage systems. Acta Agraria Debreceniensis 1(55), 109–113. doi: https://doi.org/10.34101/actaagrar/55/1919

Szűcs, L., Tuba, G., & Zsembeli, J. (2014b, feb). Effect of PRPSOL soil conditioner on the physical status of the soil in conventional and reduced tillage systems. Acta Agraria Debreceniensis 1(55), 109–113. doi: https://doi.org/10.34101/actaagrar/55/1919

Tuba, G., Kovács, G., Rivera-García, A., & Zsembeli, J. (2020a). Examination of the effect of two compost products on the penetration resistance of the soil in reduced tillage. In J. Jobbágy & K. Krištof (Eds.), Technoforum 2020: New trends in machinery and technologies for biosystems. (p. 152-159). Nitra.

Tuba, G., Kovács, G., Rivera-García, A., & Zsembeli, J. (2020b). Különböző komposztkészítmények hatása a talaj penetrációs ellenállására. Növénytermelés 69(2), 99-115.

Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1), 1-14. doi: https://doi.org/10.1007/s00425-003-1105-5

Zsembeli, J., Kovács, G., Szűcs, L., & Tóth, J. (2013). Examination of Secondary Salinization in Simple Drainage Lysimeters. In Gumpensteiner lysimetertagung (Vol. 15, p. 153-156).

Zsembeli, J., Kovács, G., & Tóth, J. (2015). Effect of Irrigation with Saline Water on the Soil in Simple Drainage Lysimeters. In Gumpensteiner lysimetertagung (Vol. 16, p. 167-170).

Zsembeli, J., Rivera-García, A., Zsembeli, Z., Kovács, G., Czellér, K., & Tuba, G. (2019). Examination of the Effect of Soil Conditioning on the Microbiological Activity of Three Different Soil Types in a Pot Experiment. In M. Makádi (Ed.), Lotex 2019: 2nd conference on long-term field experiments: Book of proceedings (p. 39-44).

Zsembeli, J., Sinka, L., Rivera-García, A., Czellér, K., Tuba, G., Krištof, K., & Findura, P. (2019). Effect of Soil Conditioning on the Moisture Content and the Salt Profile of the Soil Under Irrigation with Saline Water. Agriculture (Pol'nohospodárstvo) 65(2), 77-87. doi: https://doi.org/10.2478/agri-2019-0008

Zsembeli, J., Sinka, L., Tuba, G., Rivera-García, A., & G., K. (2021). Water use of lawns determined in weighing lysimeters. In Gumpensteiner lysimetertagung (Vol. 19, p. 133-138).

Downloads

Published

2022-12-30

How to Cite

Correlation of secondary salinization and soil conditioning in vegetable production under irrigation with saline water. (2022). COLUMELLA – Journal of Agricultural and Environmental Sciences, 9(2), 35-46. https://doi.org/10.18380/SZIE.COLUM.2022.9.2.35