Camera traps as a research method for carnivore population estimation: strength, weaknesses, opportunities and threats, analyses and improvements


  • Alexandra Kalandarishvili Department of Wildlife Biology and Management, Institute for Wildlife Management and NatureConservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter Károly u. 1, 2100 Hungary., Corresponding author, e-mail:
  • Miklós Heltai Department of Wildlife Biology and Management, Institute for Wildlife Management and NatureConservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Páter Károly u. 1, 2100 Hungary



Monitoring, Research methods, Large carnivores, Method analysis


Camera traps have been gaining popularity in population estimation studies. Based on 149 scientific journals review we evaluated the strengths, weaknesses and improvements of the camera trap method to better understand its effectiveness for studying population parameters. Camera traps have a strong advantage of being a non-invasive method, requiring minimal labor and because of its ability detect multiple species per sampling effort. However, theft and time-consuming data analyses, poor sensor performance and potential behavioral changes of wildlife due to noise and flashlights, prevent the camera traps from being the optimal population estimation method. The population parameter studied depends strongly on the behavior and biology of the target species, although the most common opportunity for development is all related to sensor performance (better triggering response and higher sensitivity) as well as extreme weather condition resistance.


Avrin, A. C., Pekins, C. E., Sperry, J. H., Wolff, P. J., & Allen, M. L. (2021). Efficacy of attractants for detecting eastern spotted skunks: an experimental approach. Wildlife Biology 2021(4), wlb.00880. doi:

Balme, G. A., Hunter, L. T. B., & Slotow, R. (2009). Evaluating Methods for Counting Cryptic Carnivores. The Journal of Wildlife Management 73(3), 433-441. doi:

Balme, G. A., Slotow, R., & Hunter, L. T. (2009). Impact of conservation interventions on the dynamics and persistence of a persecuted leopard (Panthera pardus) population. Biological Conservation 142(11), 2681-2690. doi:

Barcelos, D. C., Alvarenga, G. C., Gräbin, D. M., Baccaro, F., & Ramalho, E. E. (2023). Divergent effects of lure on multi-species camera-trap detections and quality of photos. Journal for Nature Conservation 71(1), 126317. doi:

Beirne, C., Sun, C., Tattersall, E. R., Burgar, J. M., Fisher, J. T., & Burton, A. C. (2021). Multispecies modelling reveals potential for habitat restoration to re-establish boreal vertebrate com- munity dynamics. Journal of Applied Ecology 58(12), 2821-2832. doi:

Bernard, H., Liew, N. Y. S., Wilson, A., Tangah, J., Tuuga, A., & Matsuda, I. (2022). In- ventorying terrestrial mammal species in mixed-mangrove forest of the Lower Kinabatangan, Sabah, Borneo, Malaysia, with special reference to a new locality record of otter civet, Cynogale bennettii. Mammal Research 67(1), 31-38. doi:

Bessone, M., Kühl, H. S., Hohmann, G., Herbinger, I., N’Goran, K. P., Asanzi, P., . . . Fruth, B. (2020). Drawn out of the shadows: Surveying secretive forest species with camera trap distance sampling. Journal of Applied Ecology 57(5), 963-974. doi:

Borah, J., Sharma, T., Das, D., Rabha, N., Kakati, N., Basumatary, A., ... Vattakaven, J. (2014). Abundance and density estimates for common leopard Panthera pardus and clouded leopard Neofelis nebulosa in Manas National Park, Assam, India. Oryx 48(1), 149–155. doi:

Burgar, J. M., Burton, A. C., & Fisher, J. T. (2019). The importance of considering multiple interacting species for conservation of species at risk. Conservation Biology 33(3), 709-715. doi:

Burton, A. C., Sam, M. K., Balangtaa, C., & Brashares, J. S. (2012). Hierarchical Multi- Species Modeling of Carnivore Responses to Hunting, Habitat and Prey in a West African Protected Area. PLoS ONE 7(5), e38007. doi:

Buyaskas, M., Evans, B. E., & Mortelliti, A. (2020). Assessing the effectiveness of attractants to increase camera trap detections of North American mammals. Mammalian Biology 100(1), 91- 100. doi:

Cappelle, N., Després-Einspenner, M.-L., Howe, E. J., Boesch, C., & Kühl, H. S. (2019). Validating camera trap distance sampling for chimpanzees. American Journal of Primatology 81(3), e22962. doi:

Comer, S., Speldewinde, P., Tiller, C., Clausen, L., Pinder, J., Cowen, S., & Algar, D. (2018). Evaluating the efficacy of a landscape scale feral cat control program using camera traps and occu- pancy models. Scientific Reports 8(1), 5335. doi:

Delisle, Z. J., Flaherty, E. A., Nobbe, M. R., Wzientek, C. M., & Swihart, R. K. (2021). Next- Generation Camera Trapping: Systematic Review of Historic Trends Suggests Keys to Expanded Re- search Applications in Ecology and Conservation. Frontiers in Ecology and Evolution 9(1), 617996. doi:

Dri, G. F., Blomberg, E. J., Hunter, M. L., Vashon, J. H., & Mortelliti, A. (2022). Develop- ing cost-effective monitoring protocols for track-surveys: An empirical assessment using a Canada lynx Lynx canadensis dataset spanning 16 years. Biological Conservation 276(1), 109793. doi:

Engeman, R. M., & Witmer, G. W. (2000). IPM strategies: indexing difficult to monitor

populations of pest species. In T. Salmon & A. Crabb (Eds.), Proceedings of the vertebrate pest conference (Vol. 19, pp. 183–189).

Farris, Z. J., Karpanty, S. M., Ratelolahy, F., & Kelly, M. J. (2014). Predator–Primate Distri- bution, Activity, and Co-occurrence in Relation to Habitat and Human Activity Across Fragmented and Contiguous Forests in Northeastern Madagascar. International Journal of Primatology 35(5), 859-880. doi:

Foresman, K. R., & Pearson, D. E. (1998). Comparison of Proposed Survey Procedures for Detection of Forest Carnivores. The Journal of Wildlife Management 62(4), 1217-1226. doi:

Glover-Kapfer, P., Soto-Navarro, C. A., & Wearn, O. R. (2019). Camera-trapping version 3.0: current constraints and future priorities for development. Remote Sensing in Ecology and Conserva- tion 5(3), 209-223. doi:

Gompper, M. E., Kays, R. W., Ray, J. C., LaPoint, S. D., Bogan, D. A., & Cryan, J. R. (2006). A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildlife Society Bulletin 34(4), 1142-1151. doi: 7648(2006)34[1142:ACONTT]2.0.CO;2

Howe, E. J., Buckland, S. T., Després-Einspenner, M.-L., & Kühl, H. S. (2017). Distance sam- pling with camera traps. Methods in Ecology and Evolution 8(11), 1558-1565. doi: 210X.12790

Jordan, M. J., Barrett, R. H., & Purcell, K. L. (2011). Camera trapping estimates of density and survival of fishers martes pennanti. Wildlife Biology 17(3), 266-276. doi:

Joubert, C. J., Tarugara, A., Clegg, B. W., Gandiwa, E., & Muposhi, V. K. (2020). A baited- camera trapping method for estimating the size and sex structure of African leopard (Panthera pardus) populations. MethodsX 7(1), 101042. doi:

Kämmerle, J.-L., Ritchie, E. G., & Storch, I. (2019). Restricted-area culls and red fox abun- dance: Are effects a matter of time and place? Conservation Science and Practice 1(11), e115. doi:

Kelly, M. J. (2001). Computer-aided photograph matching in studies using individual iden- tification: An example from Serengeti cheetahs. Journal of Mammalogy 82(2), 440–449. doi:<0440:capmis>;2

Kelly, M. J., Betsch, J., Wultsch, C., Mesa, B., & Mills, L. S. (2012). Noninvasive sampling for carnivores. In L. Boitani & R. A. Powell (Eds.), Carnivore ecology and conservation: a handbook of techniques (p. 47-69). Oxford University Press New York.

Kluever, B. M., Gese, E. M., Dempsey, S. J., & Knight, R. N. (2013). A comparison of methods for monitoring kit foxes at den sites. Wildlife Society Bulletin 37(2), 439-443. doi:

Larrucea, E. S., Brussard, P. F., Jaeger, M. M., & Barrett, R. H. (2007). Cameras, Coyotes, and the Assumption of Equal Detectability. The Journal of Wildlife Management 71(5), 1682-1689. doi:

Larrucea, E. S., Serra, G., Jaeger, M. M., & Barrett, R. H. (2007). Censusing bobcats using remote cameras. Western North American Naturalist 67(4), 538–548. doi: 0904(2007)67[538:cburc];2

Lazenby, B. T., Mooney, N. J., & Dickman, C. R. (2015). Detecting species interactions using remote cameras: effects on small mammals of predators, conspecifics, and climate. Ecosphere 6(12), 1-18. doi:

Macdonald, D. W., Chiaverini, L., Bothwell, H. M., Kaszta, Ż., Ash, E., Bolongon, G., ... Cushman, S. A. (2020). Predicting biodiversity richness in rapidly changing landscapes: climate, low human pressure or protection as salvation? Biodiversity and Conservation 29(14), 4035-4057. doi:

Meek, P., Ballard, G., Fleming, P., & Falzon, G. (2016). Are we getting the full picture? Animal responses to camera traps and implications for predator studies. Ecology and Evolution 6(10), 3216-3225. doi:

Mendoza, E., Martineau, P. R., Brenner, E., & Dirzo, R. (2011). A novel method to improve individual animal identification based on camera-trapping data. The Journal of Wildlife Management 75(4), 973-979. doi:

Miyamoto, K., Squires, T. E., & Araki, H. (2018). Experimental evaluation of predation of stocked salmon by riparian wildlife: effects of prey size and predator behaviours. Marine and Freshwater Research 69(3), 446-454. doi:

Muench, C., & Martínez-Ramos, M. (2016). Can Community-Protected Areas Conserve Biodiversity in Human-Modified Tropical Landscapes? The Case of Terrestrial Mammals in Southern Mexico. Tropical Conservation Science 9(1), 178–202. doi:

Negrões, N., Sarmento, P., Cruz, J., Eira, C., Revilla, E., Fonseca, C., . . . Silveira, L. (2010). Use of camera-trapping to estimate puma density and influencing factors in central Brazil. The Journal of Wildlife Management 74(6), 1195-1203. doi:

Nekaris, K. A. I., Handby, V., Campera, M., Birot, H., Hedger, K., Eaton, J., & Imron, M. A. (2020). Implementing and Monitoring the Use of Artificial Canopy Bridges by Mammals and Birds in an Indonesian Agroforestry Environment. Diversity 12(10), 399. doi:

Nichols, J. D., & Williams, B. K. (2006). Monitoring for conservation. Trends in Ecology & Evolution 21(12), 668-673. doi:

O’Brien, T. G., & Kinnaird, M. F. (2011). Density estimation of sympatric carnivores using spatially explicit capture–recapture methods and standard trapping grid. Ecological Applications 21(8), 2908-2916. doi:

O’Connell, A. F., Nichols, J. D., & Karanth, K. U. (Eds.). (2011). Camera traps in animal ecology: Methods and analyses. Springer Japan. doi:

Palencia, P., Rowcliffe, J. M., Vicente, J., & Acevedo, P. (2021). Assessing the camera trap methodologies used to estimate density of unmarked populations. Journal of Applied Ecology 58(8), 1583-1592. doi:

Palmer, R., Anderson, H., Richards, B., Craig, M. D., & Gibson, L. (2021). Does aerial baiting for controlling feral cats in a heterogeneous landscape confer benefits to a threatened native meso-predator? PLOS ONE 16(5), e0251304. doi:

Pirie, T. J., Thomas, R. L., & Fellowes, M. D. E. (2016). Limitations to recording larger mammalian predators in savannah using camera traps and spoor. Wildlife Biology 22(1), wlb.00855. doi:

Rogan, M. S., Distiller, G., Balme, G. A., Pitman, R. T., Mann, G. K. H., Dubay, S. M., . . . O’Riain, M. J. (2022). Troubled spots: Human impacts constrain the density of an apex predator inside protected areas. Ecological Applications 32(4), e2551. doi:

Selonen, V., Banks, P., Tobajas, J., & Laaksonen, T. (2022). Protecting prey by deceiving predators: A field experiment testing chemical camouflage and conditioned food aversion. Biological Conservation 275(1), 109749. doi:

Shamoon, H., Saltz, D., & Dayan, T. (2017). Fine-scale temporal and spatial population fluctuations of medium sized carnivores in a Mediterranean agricultural matrix. Landscape Ecology 32(6), 1243-1256. doi:

Silveira, L., Jácomo, A. T., & Diniz-Filho, J. A. F. (2003). Camera trap, line transect cen- sus and track surveys: a comparative evaluation. Biological Conservation 114(3), 351-355. doi:

Sollmann, R., Mohamed, A., Samejima, H., & Wilting, A. (2013). Risky business or simple solution – Relative abundance indices from camera-trapping. Biological Conservation 159(1), 405- 412. doi:

Srbek-Araujo, A. C., Da Cunha, C. J., Roper, J. J., et al. (2017). Post-dispersal seed predation by Atlantic Forest squirrels monitoring lowland tapir latrines. Tropical Ecology 58(3), 673-678.

Steinbeiser, C. M., Kioko, J., Maresi, A., Kaitilia, R., & Kiffner, C. (2019). Relative abundance and activity patterns explain method-related differences in mammalian species richness estimates. Journal of Mammalogy 100(1), 192–201. doi:

Stobo-Wilson, A. M., Brandle, R., Johnson, C. N., & Jones, M. E. (2020). Management of invasive mesopredators in the Flinders Ranges, South Australia: effectiveness and implications. Wildlife Research 47(8), 720. doi:

Strampelli, P., Andresen, L., Everatt, K. T., Somers, M. J., & Rowcliffe, J. M. (2020). Leopard Panthera pardus density in southern Mozambique: evidence from spatially explicit capture–recapture in Xonghile Game Reserve. Oryx 54(3), 405–411. doi:

Sunarto, S., Kelly, M. J., Parakkasi, K., & Hutajulu, M. B. (2015). Cat coexistence in central Sumatra: ecological characteristics, spatial and temporal overlap, and implications for management. Journal of Zoology 296(2), 104-115. doi:

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Newton, E. J., Boughton, R. K., Ivan, J. S., . . . Miller, R. S. (2020). Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2. Ecology and Evolution 10(19), 10374-10383. doi:

Thorn, M., Scott, D. M., Green, M., Bateman, P. W., & Cameron, E. Z. (2009). Estimating Brown Hyaena Occupancy Using Baited Camera Traps. South African Journal of Wildlife Research 39(1), 1–10. doi:

Thornton, D., Scully, A., King, T., Fisher, S., Fitkin, S., & Rohrer, J. (2018). Hunting associa- tions of American badgers (Taxidea taxus) and coyotes (Canis latrans) revealed by camera trapping. Canadian Journal of Zoology 96(7), 769–773. doi:

Trolliet, F., Vermeulen, C., Huynen, M.-C., & Hambuckers, A. (2014). Use of camera traps for wildlife studies: a review. Biotechnologie, Agronomie, Société et Environnement 18(3), 446-454.

Windell, R. M., Bailey, L. L., Young, J. K., Livieri, T. M., Eads, D. A., & Breck, S. W. (2022). Improving evaluation of nonlethal tools for carnivore management and conservation: evalu- ating fladry to protect an endangered species from a generalist mesocarnivore. Animal Conservation 25(1), 125-136. doi:

Xiao, W., Feng, L., Mou, P., Miquelle, D. G., Hebblewhite, M., Goldberg, J. F., . . . Ge, J. (2016). Estimating abundance and density of Amur tigers along the Sino–Russian border. Integrative Zoology 11(4), 322-332. doi:

Yoshizaki, J., Pollock, K. H., Brownie, C., & Webster, R. A. (2009). Modeling misidentifica- tion errors in capture–recapture studies using photographic identification of evolving marks. Ecology 90(1), 3-9. doi:







How to Cite

Camera traps as a research method for carnivore population estimation: strength, weaknesses, opportunities and threats, analyses and improvements. (2023). COLUMELLA – Journal of Agricultural and Environmental Sciences, 10(2), 13-24.

Similar Articles

1-10 of 86

You may also start an advanced similarity search for this article.