Examination and comparison the effects of extraction time and temperature for compost tea

Authors

  • Nikolett Éva Kiss University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management
  • Andrea Szabó University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management
  • Edit Gorliczay University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management
  • János Tamás University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management
  • Attila Nagy University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management

DOI:

https://doi.org/10.18380/SZIE.COLUM.2024.11.1.29

Keywords:

compost tea, nutrient content, poultry litter

Abstract

Composting represents an efficient technology that enables the effective utilization of by-products and waste materials. Moreover, it proves to be highly suitable for processing raw materials and converting them into fertilizers that would not be recommended for direct application without undergoing pre-processing. This is particularly crucial in the case of poultry manure, which possesses potentially hazardous properties and necessitates pre-treatment. One increasingly prevalent form of compost is known as compost tea, which involves the immersion of compost in water. In this experiment, compost tea or compost solution were created using a product called composted and pelletized poultry litter (CPPL). Four compost:water ratio (CWR) (1/2.5, 1/5, 1/10, 1/20) were applied, along with three different extraction durations (24, 48, and 72 hours) and three distinct extraction temperatures (20 °C, 35 °C, and 50 °C). Since the 1/10 and 1/20 ratios were found to be the best for subsequent applicability and spreadability, their content parameters were measured further. After elimination of the experiment, the most important nutrients (nitrogen content (nitrate and ammonium), phosphorus and potassium) were determined. The results showed that the nutrient content was highest for all four parameters at the extraction temperature of 35 °C. For example, while at 20 and 50°C the NO3 content ranged from 263 to 768 mg/l and from 210 to 534 mg/l, at 35 °C it ranged from 498.33 to 2636.67 mg/l, irrespective of the mixing ratio and extraction time. If the extraction temperature is not taken into account, the nutrient content increased with the increase of the extraction time, so that the highest values were measured at 72 hours extraction time obviously. The data measured in the present experiment will serve as a basis for subsequent experiments with different indicator plants, investigating the effect of compost when applied as a solution.

Author Biographies

  • Nikolett Éva Kiss, University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management

    Corresponding author
    kiss.nikolett@agr.unideb.hu

  • Andrea Szabó, University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management
    szabo.andrea@agr.unideb.hu  
  • Edit Gorliczay, University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management

    edit.gorliczay@agr.unideb.hu

  • János Tamás, University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management

    tamas@agr.unideb.hu

  • Attila Nagy, University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management

    attilanagy@agr.unideb.hu

References

Adekunle, I. M., Adekunle, A. A., Akintokun, A. K., Akintokun, P. O., & Arowolo, T. A. (2010). Recycling of organic wastes through composting for land applications: a Nigerian experience. Waste Management & Research: The Journal for a Sustainable Circular Economy 29(6), 582-593. https://doi.org/10.1177/0734242x10387312

Al-Dahmani, J. H., Abbasi, P. A., Miller, S. A., & Hoitink, H. A. J. (2003). Suppression of Bacterial Spot of Tomato with Foliar Sprays of Compost Extracts Under Greenhouse and Field Conditions. Plant Disease 87(8), 913-919. https://doi.org/10.1094/pdis.2003.87.8.913

Alexa, L., & Dér, S. (2001). Szakszerű komposztálás. Elmélet és gyakorlat. Gödöllő: Profikomp Kft.

Ayilara, M., Olanrewaju, O., Babalola, O., & Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability 12(11), 4456. https://doi.org/10.3390/su12114456

BassiriRad, H. (2005). Nutrient acquisition by plants: an ecological perspective (Vol. 181). Springer science & business media.

Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science 12(1), 679916. https://doi.org/10.3389/fpls.2021.679916

Bernhard, A. (2010). The nitrogen cycle: processes, players, and human impact. Nature Education Knowledge 3(10), 25.

Boldrin, A., Andersen, J. K., Møller, J., Christensen, T. H., & Favoino, E. (2009). Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Management & Research: The Journal for a Sustainable Circular Economy 27(8), 800-812. https://doi.org/10.1177/0734242x09345275

Cechin, I., & de Fátima Fumis, T. (2004). Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Science 166(5), 1379-1385. https://doi.org/10.1016/j.plantsci.2004.01.020

Csiba, A., & Fenyvesi, L. (2012). Facilities of poultry manure processing and utilization with environmental technologies. In Structures and Environmental Technologies. International Conference of Agricultural Engineering - CIGR-AgEng 2012: agriculture and engineering for a healthier life, Valencia, Spain, 8-12 July 2012. (p. P-2228). Valencia: CIGR-EurAgEng.

Dastpak, H., Pasalari, H., Jafari, A. J., Gholami, M., & Farzadkia, M. (2020). Improvement of Co-Composting by a combined pretreatment Ozonation/Ultrasonic process in stabilization of raw activated sludge. Scientific Reports 10(1), 1070. https://doi.org/10.1038/s41598-020-58054-y

Dede, O. H., & Ozer, H. (2018). Enrichment of poultry manure with biomass ash to produce organomineral fertiliser. Environmental Engineering Research 23(4), 449-455. https://doi.org/10.4491/eer.2018.081

Edwards, C. A., Arancon, N. Q., & Greytak, S. (2006). Effects of vermicompost teas on plant growth and disease. Biocycle 47(5), 28-29.

Epstein, E. (2017). The science of composting. Boca Raton: CRC Press. https://doi.org/10.1201/9780203736005

Gaál, K. (2011). Trágyakezelésés hasznosítása a baromfitelepeken. In F. Bogenfürst, P. Horn, Z. Sütő, K. Kovácsné Gaál, & G. Kovács (Eds.), Baromfitenyésztés. Egyetemi jegyzet (p. 254). Kaposvári Egyetem; Pannon Egyetem; Nyugat-Magyarországi Egyetem.

Georgakakis, D., & Krintas, T. (2000). Optimal use of the Hosoya system in composting poultry manure. Bioresource Technology 72(3), 227-233. https://doi.org/10.1016/S0960-8524(99)00122-4

González-Hernández, A. I., Suárez-Fernández, M. B., Pérez-Sánchez, R., Gómez-Sánchez, M. Á., & Morales-Corts, M. R. (2021). Compost Tea Induces Growth and Resistance against Rhizoctonia solani and Phytophthora capsici in Pepper. Agronomy 11(4), 781. https://doi.org/10.3390/agronomy11040781

Gorliczay, E., Boczonádi, I., Kiss, N. É., Tóth, F. A., Pabar, S. A., Biró, B., . . . Tamás, J. (2021). Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling. Agriculture 11(7), 683. https://doi.org/10.3390/agriculture11070683

Hargreaves, J. C., Adl, M. S., & Warman, P. R. (2009). Are compost teas an effective nutrient amendment in the cultivation of strawberries? Soil and plant tissue effects. Journal of the Science of Food and Agriculture 89(3), 390-397. https://doi.org/10.1002/jsfa.3456

Hosoya. (1996). Hosoya Manure Fermentation System (Tech. Rep.). 412 Fukaya, Ayase-Shi, Kanagawa-ken 252, Japan: Hosoya & Co.

Ingham, E. R. (2005). The compost tea brewing manual. Corvallis, OR, USA: Soil Foodweb Incorporated.

Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy 11(10), 2010. https://doi.org/10.3390/agronomy11102010

Kim, M. J., Shim, C. K., Kim, Y. K., Hong, S. J., Park, J. H., Han, E. J., . . . Kim, S. C. (2015).

Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation. The Plant Pathology Journal 31(3), 259-268. https://doi.org/10.5423/ppj.oa.02.2015.0024

Kiss, N. É., Tamás, J., Szőllősi, N., Gorliczay, E., & Nagy, A. (2021). Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production. Agriculture 11(11), 1130. https://doi.org/10.3390/agriculture11111130

Li, S.-X., Wang, Z.-H., & Stewart, B. (2013). Chapter Five - Responses of Crop Plants to Ammonium and Nitrate N. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 118, p. 205-397). Academic Press. https://doi.org/10.1016/B978-0-12-405942-9.00005-0

Litterick, A. M., Harrier, L., Wallace, P., Watson, C. A., & Wood, M. (2004). The Role of Uncomposted Materials, Composts, Manures, and Compost Extracts in Reducing Pest and Disease Incidence and Severity in Sustainable Temperate Agricultural and Horticultural Crop Production–A Review. Critical Reviews in Plant Sciences 23(6), 453-479. https://doi.org/10.1080/07352680490886815

Marmolejo-Rebellón, L. F., Oviedo-Ocaña, E. R., & Torres-Lozada, P. (2020). Organic Waste Composting at Versalles: An Alternative That Contributes to the Economic, Social and Environmental Well-Being of Stakeholders. In Organic waste composting through nexus thinking (pp. 147–164). Springer International Publishing. https://doi.org/10.1007/978-3-030-36283-6_7

Marschner, H. (2011). Marschner’s mineral nutrition of higher plants. Academic press.

Morales-Corts, M. R., Pérez-Sánchez, R., & Gómez-Sánchez, M. Á. (2018). Efficiency of garden waste compost teas on tomato growth and its suppressiveness against soilborne pathogens. Scientia Agricola 75(5), 400-409. https://doi.org/10.1590/1678-992x-2016-0439

Onwosi, C. O., Ndukwe, J. K., Aliyu, G. O., Chukwu, K. O., Ezugworie, F. N., & Igbokwe, V. C. (2020). Composting: An Eco-friendly Technology for Sustainable Agriculture. In Ecological and practical applications for sustainable agriculture (p. 179-206). Springer Singapore. https://doi.org/10.1007/978-981-15-3372-3_9

Pane, C., Palese, A. M., Spaccini, R., Piccolo, A., Celano, G., & Zaccardelli, M. (2016). Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Scientia Horticulturae 202(1), 117-124. https://doi.org/10.1016/j.scienta.2016.02.034

Pergola, M., Persiani, A., Palese, A. M., Di Meo, V., Pastore, V., D’Adamo, C., & Celano, G. (2018). Composting: The way for a sustainable agriculture. Applied Soil Ecology 123(1), 744-750. https://doi.org/10.1016/j.apsoil.2017.10.016

Pergola, M., Persiani, A., Pastore, V., Palese, A. M., D’Adamo, C., De Falco, E., & Celano, G. (2020). Sustainability Assessment of the Green Compost Production Chain from Agricultural Waste: A Case Study in Southern Italy. Agronomy 10(2), 230. https://doi.org/10.3390/agronomy10020230

Pilla, N., Tranchida-Lombardo, V., Gabrielli, P., Aguzzi, A., Caputo, M., Lucarini, M., ... Zaccardelli, M. (2023). Effect of Compost Tea in Horticulture. Horticulturae 9(9), 984. https://doi.org/10.3390/horticulturae9090984

Radovich, T., & Arancon, N. (Eds.). (2011). Tea time in the tropics: A handbook for compost tea production and use. University of Hawaii: College of Tropical Agriculture and Human Resources.

Sangamithirai, K. M., Jayapriya, J., Hema, J., & Manoj, R. (2015). Evaluation of in-vessel co-composting of yard waste and development of kinetic models for co-composting. International Journal of Recycling of Organic Waste in Agriculture 4(3), 157-165. https://doi.org/10.1007/s40093-015-0095-1

Scheuerell, S., & Mahaffee, W. (2002). Compost Tea: Principles and Prospects For Plant Disease Control. Compost Science & Utilization 10(4), 313–338. https://doi.org/10.1080/1065657x.2002.10702095

Sequi, P. (1996). The Role of Composting in Sustainable Agriculture. In M. de Bertoldi, P. Sequi, B. Lemmes, & T. Papi (Eds.), The science of composting (p. 23-29). Springer Netherlands. https://doi.org/10.1007/978-94-009-1569-5_3

Shaban, H., Fazeli-Nasab, B., Alahyari, H., Alizadeh, G., & Shahpesandi, S. (2015). An Overview of the Benefits of Compost tea on Plant and Soil Structure. Advances in Bioresearch 6(1), 154-158.

Shrestha, K., Shrestha, P., Walsh, K. B., Harrower, K. M., & Midmore, D. J. (2011). Microbial enhancement of compost extracts based on cattle rumen content compost – Characterisation of a system. Bioresource Technology 102(17), 8027-8034. https://doi.org/10.1016/j.biortech.2011.06.076

Song, J., Yang, J., & Jeong, B. R. (2021). Growth, Quality, and Nitrogen Assimilation in Response to High Ammonium or Nitrate Supply in Cabbage (Brassica campestris L.) and Lettuce (Lactuca sativa L.). Agronomy 11(12), 2556. https://doi.org/10.3390/agronomy11122556

Sujesh, S., Murali, T., Sahithya, K., & Das, N. (2017). Preparation of Compost Tea and its Utility as a Plant Growth Promoter. Research Journal of Pharmacy and Technology 10(9), 3115. https://doi.org/10.5958/0974-360x.2017.00554.6

Sulzberger, R. (2006). Komposzt, föld, trágya. Budapest: Mérték Kiadó.

Szabó, L. (2016). Hosoya trágyakezelési technológia. Gödöllő.

Tawfik, A., Eraky, M., Osman, A. I., Ai, P., Zhou, Z., Meng, F., & Rooney, D. W. (2023).

Bioenergy production from chicken manure: a review. Environmental Chemistry Letters 21(5), 2707-2727. https://doi.org/10.1007/s10311-023-01618-x

Xu, P., Shu, L., Li, Y., Zhou, S., Zhang, G., Wu, Y., & Yang, Z. (2023). Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 9(5), e16311. https://doi.org/10.1016/j.heliyon.2023.e16311

Zaccardelli, M., Pane, C., Villecco, D., Palese, A. M., & Celano, G. (2018). Compost tea spraying increases yield performance of pepper (Capsicum annuum L.) grown in greenhouse under organic farming system. Italian Journal of Agronomy 13(3), 229-234. https://doi.org/10.4081/ija.2018.991

Zakarya, I. A., Jamial, K. A., & Mat Tanda, N. (2018). Cultivating Composting Culture Activities among Citizens and Its Beneficial to Prolong the Landfill Lifespan. In N. Mohamed Noor & A. Azhari (Eds.), International Conference on Civil Environmental Engineering (CENVIRON 2017) (Vol. 34, p. 02021). EDP Sciences. https://doi.org/10.1051/e3sconf/20183402021

Downloads

Published

2024-07-12

Issue

Section

Article

How to Cite

Examination and comparison the effects of extraction time and temperature for compost tea. (2024). COLUMELLA – Journal of Agricultural and Environmental Sciences, 11(1), 29-38. https://doi.org/10.18380/SZIE.COLUM.2024.11.1.29

Similar Articles

51-56 of 56

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)