Soil related environmental considerations of farmers in the Great Hungarian Plain
DOI:
https://doi.org/10.18380/SZIE.COLUM.2023.10.1.35Keywords:
environmental consciousness, economic consciousness, reduced tillage, soil conditioning, soil reclamationAbstract
Climate change and associated environmental changes are the major sustainability challenges facing the world today. The selection of appropriate agrotechnological elements is required not only to increase the quality and quantity of food produced but as well as reducing the costs of the farmers and protecting the environment for future generations. In the Great Hungarian Plain, the adoption of recent environmentally friendly technologies is still not sufficient and the region faces various environmental challenges. This study aimed to analyse the economic and environmental consciousness of farmers in the selection of 3 agrotechnological elements (soil protective cultivation, soil reclamation/conditioning, manure application). A pilot study was conducted on 5 representative farmers, in which they were interviewed, and questionnaires were designed to critically analyse farmers’ perceptions of the environment based on the opinions of 106 respondents. The result show that farmers are aware of the environmental impacts of selected technologies in their farms. They highlighted some of the environmental challenges they are experiencing including drought, secondary salinization, and unfavourable soil properties. However, they showed more economic than environmental consciousness, as they suggested that it was important to be familiar with economic issues and conditions to ensure higher income. The level of willingness to introduce or apply soil protective cultivation, soil reclamation/conditioning, and manure differed from low to high.
References
Abercrombie, D., Akchurin, N., Akilli, E., Maestre, J. A., Allen, B., Gonzalez, B. A., ... Zucchetta, A. (2020). Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. Physics of the Dark Universe 27(1), 100371. doi: https://doi.org/10.1016/j.dark.2019.100371
Birkás, M., Balla, I., Gyuricza, C., Kende, Z., Kovács, G. & Percze, A. (2021). Hátráltató és elo ̋revivo ̋ tényezo ̋k a hazai talajmu ̋velésben. Agrokémia és Talajtan 70(2), 155-170. doi: https://doi.org/10.1556/0088.2021.00102
Birkás, M., Dekemati, I., Kende, Z. & Pósa, B. (2017). Review of soil tillage history and new challenges in Hungary. Hungarian Geographical Bulletin 66(1), 55-64. doi: https://doi.org/10.15201/hungeobull.66.1.6
Brandsma, R., Fullen, M. & Hocking, T. (1999). Soil conditioner effects on soil structure and erosion. Journal of Soil and Water Conservation 54(2), 485-489.
Busari, M. A., Kukal, S. S., Kaur, A., Bhatt, R. & Dulazi, A. A. (2015). Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research 3(2), 119-129. doi: https://doi.org/10.1016/j.iswcr.2015.05.002
Ervin, D. E. (1982). Soil erosion control on owner-operated and rented cropland. Journal of Soil and Water Conservation 37(5), 285-288.
FAO. (2017). The future of food and agriculture – Trends and challenges. Rome, Italy: Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/3/i6583e/i6583e.pdf
Garcia, A. R., Tuba, G., Czellér, K., Kovács, G. & Zsembeli, J. (2020). Mitigation of the effect of secondary salinization by micro soil conditioning. Acta Agraria Debreceniensis (1), 115-119. doi: https://doi.org/10.34101/actaagrar/1/3720
Kalra, N., Jain, M., Joshi, H., Choudhary, R., Harit, R., Vatsa, B., . . . Kumar, V. (1998). Flyash as a soil conditioner and fertilizer. Bioresource Technology 64(3), 163-167. doi: https://doi.org/10.1016/S0960-8524(97)00187-9
Kanianska, R. (2016). Agriculture and Its Impact on Land-Use, Environment, and Ecosystem Services. In A. Almusaed (Ed.), Landscape ecology (chap. 1). Rijeka: IntechOpen. doi: https://doi.org/10.5772/63719
Lal, R., Reicosky, D. & Hanson, J. (2007). Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil and Tillage Research 93(1), 1-12. doi: https://doi.org/10.1016/j.still.2006.11.004
Looga, J., Jürgenson, E., Sikk, K., Matveev, E. & Maasikamäe, S. (2018). Land fragmentation and other determinants of agricultural farm productivity: The case of Estonia. Land Use Policy 79(1), 285-292. doi: https://doi.org/10.1016/j.landusepol.2018.08.021
Mwangi, M. & Kariuki, S. (2015). Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. Journal of Economics and sustainable development 6(5), 208-217.
Qi, J.-Y., Wang, X., Zhao, X., Pu, C., Kan, Z.-R., Li, C., . . . Zhang, H.-L. (2019). Temporal variability of soil organic carbon in paddies during 13-year conservation tillage. Land Degradation & Development 30(15), 1840-1850. doi: https://doi.org/10.1002/ldr.3384
Robertson, G. P. & Swinton, S. M. (2005). Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Frontiers in Ecology and the Environment 3(1), 38-46. doi: https://doi.org/10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2
Schneider, U. A. & Kumar, P. (2008). Greenhouse Gas Mitigation through Agriculture. Choices 23(1), 19-23.
Stinner, B. R. & House, G. J. (1990). Arthropods and Other Invertebrates in Conservation-Tillage Agriculture. Annual Review of Entomology 35(1), 299-318. doi: https://doi.org/10.1146/annurev.en.35.010190.001503
Taylor, D. L. & Miller, W. L. (1978). The Adoption Process and Environmental Innovations. A Case Study of a Government Project. Rural Sociology 43(1), 634-648.
Turmel, M.-S., Speratti, A., Baudron, F., Verhulst, N. & Govaerts, B. (2015). Crop residue management and soil health: A systems analysis. Agricultural Systems 134(1), 6-16. doi: https://doi.org/10.1016/j.agsy.2014.05.009
Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P. C., ... Sayre, K. D. (2010). Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems? In Food security and soil quality (p. 137-208). CRC Press. doi: https://doi.org/10.1201/ebk1439800577-7
Wang, W., Yuan, J., Gao, S., Li, T., Li, Y., Vinay, N., . . . Wen, X. (2020). Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China. Journal of Cleaner Production 274(1), 122854. doi: https://doi.org/10.1016/j.jclepro.2020.122854
Wilhelm, W. W., Doran, J. W. & Power, J. F. (1986). Corn and Soybean Yield Response to Crop Residue Management Under No-Tillage Production Systems. Agronomy Journal 78(1), 184-189. doi: https://doi.org/10.2134/agronj1986.00021962007800010036x
Wilhelm, W. W., Johnson, J. M. F., Karlen, D. L. & Lightle, D. T. (2007). Corn Stover to Sustain Soil Organic Carbon Further Constrains Biomass Supply. Agronomy Journal 99(6), 1665-1667. doi: https://doi.org/10.2134/agronj2007.0150
Zsembeli, J., Kovács, G., Szőllősi, N. & Gyuricza, C. (2008). Correlations of soil management and carbon stock change in soils. In Z. Lehocká, M. Klimeková & W. Sukkel (Eds.), ECOMIT Proceedings of the 5th International Scientific Conference on Sustainable Farming Systems, November 5-7 (p. 75-80). Piešt’any, Slovakia.
Zsembeli, J., Takács, M., Kovács, G. & Tuba, G. (2019). A talaj ásványi-, valamint repce és napraforgó növényi maradványok nitrogéntartalmának összefüggése jellegzetes hazai talajokon. Agrokémia és Talajtan 68(2), 243-258. doi: https://doi.org/10.1556/0088.2019.00033
Downloads
Published
Issue
Section
License
Copyright (c) 2023 József Zsembeli, Géza Tuba, Györgyi Kovács, Lúcia Sinka, Caroline Nyaboke
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.