Assessment of measured and estimated meteorological data in terms of sorghum production on the example of Hamelmalo, Eritrea

Authors

  • Mehari Gebreyesus Eritrea Institute of Technology, College of Engineering and Technology, Department of Agricultural Engineering, Mai Nefhi, P.O. Box 12676, Eritrea
  • Györgyi Kovács Hungarian University of Agriculture and Life Sciences, Karcag Research Institute, 5300 Karcag, Kisújszállási út 166., Hungary
  • Géza Tuba Hungarian University of Agriculture and Life Sciences, Karcag Research Institute, 5300 Karcag, Kisújszállási út 166., Hungary https://orcid.org/0000-0001-7356-4729
  • Arzu Rivera-Garcia Hungarian University of Agriculture and Life Sciences, Karcag Research Institute, 5300 Karcag, Kisújszállási út 166., Hungary
  • József Zsembeli Hungarian University of Agriculture and Life Sciences, Karcag Research Institute, 5300 Karcag, Kisújszállási út 166., Hungary https://orcid.org/0000-0003-1958-2584

DOI:

https://doi.org/10.18380/SZIE.COLUM.2022.9.1.17

Keywords:

climate change, meteorological data, sorghum production, Eritrea

Abstract

Eritrea is exposed to climate variability and extreme events like drought and precipitation variability. Hamelmalo, a sub region in Eritrea, suffers from all the problems brought by climate change, especially because local people mainly depend on rainfed agriculture. I it is difficult to conduct climate related research activities for the region due to the shortage of meteorological data. However, in 2015, a new, complete meteorological station was established providing the chance of the first observations for practical and scientific purposes. The main objective of this study was to evaluate some climatic parameters from crop productional point of view by comparing the observed values with ones calculated by the Local Climate Estimator (LCE) model. Chi-square test was used to statistically analyse the differences. Based on the results, all the studied climatic parameters, except for precipitation, were almost on a par, which means there were no statistically significant differences between the observed and the estimated values. It can be concluded that the most variable climatic parameter in Hamelmalo is precipitation and this also affects the climatic water balance hence the need for irrigation if higher yields are wanted to be achieved. Sufficient water is vital in the mid-season and the late developmental stage of sorghum. Therefore, sowing time is advised to be adjusted to early July to ensure the maximum vegetative growth and seed setting period to be reached at the end of August in order to take the advantage of the positive climatic water balance of these two months.

Author Biography

  • József Zsembeli, Hungarian University of Agriculture and Life Sciences, Karcag Research Institute, 5300 Karcag, Kisújszállási út 166., Hungary

    Corresponding author, email: Zsembeli.Jozsef@uni-mate.hu

References

Abou Kheira, A. A., & Atta, N. M. (2009). Response of Jatropha curcas L. to water deficits: Yield, water use efficiency and oilseed characteristics. Biomass and Bioenergy 33(10), 1343–1350. doi: https://doi.org/10.1016/j.biombioe.2008.05.015

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., et al. (1998). Crop evapotranspiration- guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, Rome 300(9), D05109.

Calzadilla, A., Zhu, T., Rehdanz, K., Tol, R. S., & Ringler, C. (2009). Economywide impacts of climate change on agriculture in Sub-Saharan Africa (IFPRI Discussion Paper 00873). Interna- tional Food Policy Research Institute (IFPRI).

Camberlin, P., & Philippon, N. (2002). The East African March–May Rainy Season: Associ- ated Atmospheric Dynamics and Predictability over the 1968–97 Period. Journal of Climate 15(9), 1002–1019. doi: https://doi.org/10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2

Cattani, E., Merino, A., Guijarro, J., & Levizzani, V. (2018). East Africa Rainfall Trends and Variability 1983–2015 Using Three Long-Term Satellite Products. Remote Sensing 10(6), 931. doi: https://doi.org/10.3390/rs10060931

Doorenbos, J. (1976). Agro-meteorological field stations (Tech. Rep.). Estudios FAO. Riego y Avenamiento (FAO) spa no. 27: FAO.

Doorenbos, J., & Kassam, A. (1979). Yield response to water. Irrigation and drainage paper 33(1), 257.

Eritrea. (2004). Interim Poverty Reduction Strategy Paper (Tech. Rep.). Asmara: Government of the State of Eritrea.

FAO. (1994). Agricultural Sector Review and Project Identification (Tech. Rep.). Rome, Italy: Food and Agricultural Organization of the United Nations.

FAO. (2005a). AQUASTAT Country Profile – Eritrea (Tech. Rep.). Rome, Italy: Food and Agriculture Organization of the United Nations.

FAO. (2005b). New_Loc Clim: Local Climate Estimator, Environment and Natural Resources Working Paper 20 (Tech. Rep.). Rome, Italy: Food and Agricultural Organization of the United Nations and German Weather Services.

FAO. (2017). Migration, Agriculture and Climate Change. Reducing Vulnerabilities and Enhancing Resilience (Tech. Rep.). Rome, Italy: Food and Agricultural Organization of the United Nations.

Fereres, E., & García-Vila, M. (2018). Irrigation Management for Efficient Crop Production. In Encyclopedia of sustainability science and technology (pp. 1–17). Springer New York. doi: https://doi.org/10.1007/978-1-4939-2493-6_162-3

Gebreyesus, M., Garcia, A. R., Tuba, G., Kovács, G., Sinka, L., & Zsembeli, J. (2021). Climatic water balance in Hamelmalo, Eritrea. Acta Agraria Debreceniensis (1), 69–76. doi: https://doi.org/10.34101/actaagrar/1/8307

Grieser, J., Gommes, R., & Bernardi, M. (2006). New LocClim–the local climate estimator of FAO. In Geophysical research abstracts (Vol. 8, p. 2).

Haile, A., & Hofsvang, T. (2001). Effect of sowing dates and fertilizer on the severity of stem borer (Busseola fusca Fuller, Lepidoptera: Noctuidae) on sorghum in Eritrea. International Journal of Pest Management 47(4), 259–264. doi: https://doi.org/10.1080/09670870110046786

Harnos,N.(2003).A klímaváltozás hatásának szimulációs vizsgálata őszi búza produkciójára. AGRO-21 füzetek 31(1), 56–73.

IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Work- ing Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (S. Solomon et al., Eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge Uni- versity Press.

Irmak, S. (2009). Estimating Crop Evapotranspiration from Reference Evapotranspiration and Cropcoefficients (Tech. Rep.). University of Nebraska-Lincoln.

Konkolyné Bihari, Z., Lakatos, M., & Szalai, S. (2008). Magyarország éghajlatáról. Vál- tozékonyság térben és időben. OMSZ-kiadvány.

Kuo, S.-F., Ho, S.-S., & Liu, C.-W. (2006). Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan. Agricultural Water Management 82(3), 433–451. doi: https://doi.org/10.1016/j.agwat.2005.08.002

Lal, R. (1991). Current research on crop water balance and implications for the future. In Proceedings of the International Workshop of the Soil Water Balance in the Sudano-Sahelian Zone, Niamey, Niger (pp. 31–44).

Lim, E.-P., & Hendon, H. H. (2017). Causes and predictability of the negative indian ocean dipole and its impact on la niña during 2016. Scientific Reports 7(1), 12619. doi: https://doi.org/10.1038/s41598-017-12674-z

MoA. (2005). Area and Production by Zoba from 1992-2005 (Tech. Rep.). Asmara, Eritrea: Ministry of Agriculture.

MoA. (2010). Annual crop production report, planning and statistics office of MoA (Ministry of Agricuture) (Tech. Rep.). Asmara, Eritrea: Ministry of Agriculture.

Mutai, C. C., & Ward, M. N. (2000). East African Rainfall and the Tropical Circulation/Convection on Intraseasonal to Interannual Timescales. Journal of Climate 13(22), 3915–3939. doi: https://doi.org/10.1175/1520-0442(2000)013<3915:EARATT>2.0.CO;2

Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, C., Lennard, C., Padgham, J., Urquhart, P., & Descheemaeker, K. (2014). Africa (Tech. Rep.). Cambridge University Press: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment.

Shenkut, A., Tesfaye, K., & Abegaz, F. (2013). Determination of Water Requirement and Crop Coefficient for Sorghum (Sorghum bicolor L.) at Melkassa, Ethiopia. Science, Technology and Arts Research Journal 2(3), 16–24. doi: https://doi.org/10.4314/star.v2i3.98717

Sidahmed, A. E. (2017). Recent Trends in Drylands and Future Scope for Advancement. In Climate variability impacts on land use and livelihoods in drylands (pp. 21–57). International Atomic Energy Agency, Vienna, Austria: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-56681-8_2

Smith, M., Kivumbi, D., & Heng, L. (2002). Use of the FAO CROPWAT model in deficit irrigation studies. In Deficit irrigation practices.

Todorovic, M. (2006). An Excel-based tool for real time irrigation management at field scale. In Proceedings of the International Symposium on Water and Land Management for Sustainable Irrigated Agriculture, 4–8 April, 2006. Adana, Turkey.

Tripathi, R. P., Kafil, I., & Ogbazghi, W. (2015). Tillage and Irrigation Requirements of Sorghum (Sorghum bicolor L.) at Hamelmalo, Anseba Region of Eritrea. Open Journal of Soil Science 05(12), 287–298. doi: https://doi.org/10.4236/ojss.2015.512027

Tripathi, R. P., & Ogbazghi, W. (2010). Development and Management of a Hilly Watershed in Hamelmalo Agricultural College Farm, as a Demonstration Site for Farmers and a Study Site for Students. (Final Technical Report of the Project Financed by Eastern and Southern Africa Partnership Programme (ESAAP)). Keren, Eritrea: Department of Land Resources and Environment, Hamelmalo Agricultural College.

UNFCCC. (2001). Under the United Nations Framework Convention on Climate Change (UNFCCC), Eritrea’s Initial National Communication (Tech. Rep.). Asmara, Eritrea: Department of Environment in the Ministry of Land, Water and Environment.

Weldeslassie, T., Tripathi, R. P., & Ogbazghi, W. (2016). Optimizing Tillage and Irrigation Requirements of Sorghum in Sorghum-Pigeonpea Intercrop in Hamelmalo Region of Eritrea. Journal of Geoscience and Environment Protection 04(04), 63–73. doi: https://doi.org/10.4236/gep.2016.44009

Whetton, P., & Chiew, F. (2021). Chapter 12 - Climate change in the Murray–Darling Basin. In B. T. Hart, N. R. Bond, N. Byron, C. A. Pollino, & M. J. Stewardson (Eds.), Murray-Darling basin, Australia (Vol. 1, p. 253-274). Elsevier. doi: https://doi.org/10.1016/B978-0-12-818152-2.00012-7

WMO. (2010). A Meteorológiai Világszervezet (WMO) állásfoglalása az éghajat 2009. évi állapotáról (Magyar fordítás). Országos Meteorológiai Szolgálat.

Zsembeli, J., Czellér, K., Sinka, L., Kovács, G., & Tuba, G. (2019). Application of lysimeters in agricultural water management. In P. Máchal (Ed.), Creating a platform to address the techniques used in creation and protection of environment and in economic management of water in the soil.(pp. 5–21). Brno, Czech Republic: International Visegrád Fund. Retrieved from http://visegradfund.mendelu.cz/wcd/w-rek-visegradfund/resume.pdf

Zsembeli, J., Kovács, G., Tuba, G., Czellér, K., & Juhász, C. (2019). Climate change at local level on the base of the air temperature and precipitation data of the weather station of Karcag. In P. Máchal (Ed.), Creating a platform to address the techniques used in creation and protection of environment and in economic management of water in the soil (pp. 43–49). Brno, Czech Republic: International Visegrád Fund. Retrieved from http://visegradfund.mendelu.cz/wcd/w-rek-visegradfund/resume.pdf

Downloads

Published

2022-07-08

Issue

Section

Article

How to Cite

Assessment of measured and estimated meteorological data in terms of sorghum production on the example of Hamelmalo, Eritrea. (2022). COLUMELLA – Journal of Agricultural and Environmental Sciences, 9(1), 17-30. https://doi.org/10.18380/SZIE.COLUM.2022.9.1.17

Similar Articles

61-70 of 73

You may also start an advanced similarity search for this article.