In silico promoter analysis and expression of the BIG BROTHER gene in different organs of potato

Authors

  • Khongorzul Odgerel Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, 2100 Gödöllő, Szent-Györgyi A. u. 4, Hungary https://orcid.org/0000-0002-8889-631X
  • Zsófia Bánfalvi Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, 2100 Gödöllő, Szent-Györgyi A. u. 4, Hungary https://orcid.org/0000-0003-4729-4432

DOI:

https://doi.org/10.18380/SZIE.COLUM.2022.9.1.31

Keywords:

Abiotic stress, BIG BROTHER gene, cis-acting regulatory elements, Solanum tuberosum L., transcription factors

Abstract

The ubiquitin E3 ligase BIG BROTHER/ENHANCER OF DA1 (BB) gene encoding a RING finger protein was identified as a central growth regulator in Arabidopsis thaliana. It was found that BB restricts cell proliferation and promotes leaf senescence. Besides of Arabidopsis, however, the role and regulation of BB in other plant species is only sparsely known. Supposing that the BB gene, like in Arabidopsis, has an important role in the development of potato we aimed to analyse a 3.0-kb promoter sequence of the potato BB gene, StBB, in silico and study the level of StBB expression by quantitative reverse transcription PCR in different organs. A total of 48 binding sites for 15 transcription factor (TF) families were predicted. Most of them were located in the -1.5-kb promoter region. The dominating family of TFs was DOF. It was found that 20 out of the 24 TFs with known functions are involved in developmental processes such as for example, the flower-, leaf-, stem- and root development or cell cycle regulation. In line with this finding, the StBB mRNA was detected in each organ tested with the largest amounts in petal and stamen. These results suggest a similar function of StBB in potato than that is of BB in Arabidopsis, i.e., restriction of organ overgrowth during development and limitation of the plant growth.

Author Biography

  • Khongorzul Odgerel, Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, 2100 Gödöllő, Szent-Györgyi A. u. 4, Hungary

    Corresponding author, email: Khongorzul.Odgerel@phd.uni-mate.hu

References

Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., & Toth, I. K. (2012). Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Security 4(4), 477–508. doi: https://doi.org/10.1007/s12571-012-0220-1

Bögre, L., Magyar, Z., & López-Juez, E. (2008). New clues to organ size control in plants. Genome Biology 9(7), 226. doi: https://doi.org/10.1186/gb-2008-9-7-226

Borner, R., Kampmann, G., Chandler, J., Gleißner, R., Wisman, E., Apel, K., & Melzer, S. (2000). A MADS domain gene involved in the transition to flowering in Arabidopsis. The Plant Journal 24(5), 591–599. doi: https://doi.org/10.1046/j.1365313x.2000.00906.x

Breuninger, H., & Lenhard, M. (2012). Expression of the central growth regulator BIG BROTHER is regulated by multiple cis-elements. BMC Plant Biology 12(1), 41. doi: https://doi.org/10.1186/1471-2229-12-41

Cattaneo, P., & Hardtke, C. S. (2017). BIG BROTHER Uncouples Cell Proliferation from Elongation in the Arabidopsis Primary Root. Plant and Cell Physiology 58(9), 1519–1527. doi: https://doi.org/10.1093/pcp/pcx091

Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology 35(1), 15–22. doi: https://doi.org/10.1016/j.pbi.2016.09.003

Disch, S., Anastasiou, E., Sharma, V. K., Laux, T., Fletcher, J. C., & Lenhard, M. (2006). The E3 Ubiquitin Ligase BIG BROTHER Controls Arabidopsis Organ Size in a Dosage-Dependent Manner. Current Biology 16(3), 272–279. doi: https://doi.org/10.1016/j.cub.2005.12.026

Dong, H., Dumenil, J., Lu, F.-H., Na, L., Vanhaeren, H., Naumann, C., Klecker, M., Prior, R., Smith, C., McKenzie, N., Saalbach, G., Chen, L., Xia, T., Gonzalez, N., Seguela, M., Inzé, D., Dissmeyer, N., Li, Y., & Bevan, M. W. (2017). Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes & Development 31(2), 197–208. doi: https://doi.org/10.1101/gad.292235.116

Du, L., Li, N., Chen, L., Xu, Y., Li, Y., Zhang, Y., Li, C., & Li, Y. (2014). The Ubiquitin Receptor DA1 Regulates Seed and Organ Size by Modulating the Stability of the Ubiquitin-Specific Protease UBP15/SOD2 in Arabidopsis. The Plant Cell 26(2), 665–677. doi: https://doi.org/10.1105/tpc.114.122663

Feller, A., Machemer, K., Braun, E. L., & Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66(1), 94–116. doi: https://doi.org/10.1111/j.1365-313X.2010.04459.x

Feurtado, J. A., Huang, D., Wicki-Stordeur, L., Hemstock, L. E., Potentier, M. S., Tsang, E. W., & Cutler, A. J. (2011). The Arabidopsis C2H2 Zinc Finger INDETERMINATE DO- MAIN1/ENHYDROUS Promotes the Transition to Germination by Regulating Light and Hormonal Signaling during Seed Maturation. The Plant Cell 23(5), 1772–1794. doi: https://doi.org/10.1105/tpc.111.085134

Hakoshima, T. (2018). Structural basis of the specific interactions of GRAS family proteins. FEBS Letters 592(4), 489–501. doi: https://doi.org/10.1002/1873-3468.12987

Horiguchi, G., Ferjani, A., Fujikura, U., & Tsukaya, H. (2005). Coordination of cell prolifer- ation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research 119(1), 37–42. doi: https://doi.org/10.1007/s10265-005-0232-4

Hu, Y. X., Wang, Y. H., Liu, X. F., & Li, J. Y. (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research 14(1), 8–15. doi: https://doi.org/10.1038/sj.cr.7290197

Kebede, A., & Kebede, M. (2021). In silico analysis of promoter region and regulatory elements of glucan endo-1,3-beta-glucosidase encoding genes in Solanum tuberosum: cultivar DM 1-3 516 R44. Journal of Genetic Engineering and Biotechnology 19(1), 145. doi: https://doi.org/10.1186/s43141-021-00240-0

Landis, J. B., Kurti, A., Lawhorn, A. J., Litt, A., & McCarthy, E. W. (2020). Differen- tial Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of Nicotiana tabacum (Solanaceae). Genes 11(9), 1097. doi: https://doi.org/10.3390/genes11091097

Landis, J. B., Soltis, D. E., & Soltis, P. S. (2017). Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). BMC Genomics 18(1), 475. doi: https://doi.org/10.1186/s12864-017-3868-2

Lang, Z., Zhou, P., Yu, J., Ao, G., & Zhao, Q. (2007). Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta 227(2), 387–396. doi: https://doi.org/10.1007/s00425-007-0625-9

Lee, H. W., Kim, N. Y., Lee, D. J., & Kim, J. (2009). LBD18/ASL20 Regulates Lateral Root Formation in Combination with LBD16/ASL18 Downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiology 151(3), 1377–1389. doi: https://doi.org/10.1104/pp.109.143685

Li, C., Gu, L., Gao, L., Chen, C., Wei, C.-Q., Qiu, Q., Chien, C.-W., Wang, S., Jiang, L., Ai, L.-F., Chen, C.-Y., Yang, S., Nguyen, V., Qi, Y., Snyder, M. P., Burlingame, A. L., Kohalmi, S. E., Huang, S., Cao, X., Wang, Z.-Y., Wu, K., Chen, X., & Cui, Y. (2016). Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nature Genetics 48(6), 687–693. doi: https://doi.org/10.1038/ng.3555

Li, X., Guo, C., Ahmad, S., Wang, Q., Yu, J., Liu, C., & Guo, Y. (2019). Systematic Analysis of MYB Family Genes in Potato and Their Multiple Roles in Development and Stress Responses. Biomolecules 9(8), 317. doi: https://doi.org/10.3390/biom9080317

Liebsch, D., Sunaryo, W., Holmlund, M., Norberg, M., Zhang, J., Hall, H. C., Helizon, H., Jin, X., Helariutta, Y., Nilsson, O., Polle, A., & Fischer, U. (2014). Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141(22), 4311–4319. doi: https://doi.org/10.1242/dev.111369

Meister, R. J., Williams, L. A., Monfared, M. M., Gallagher, T. L., Kraft, E. A., Nelson, C. G., & Gasser, C. S. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. The Plant Journal 37(3), 426–438. doi: https://doi.org/10.1046/j.1365-313x.2003.01971.x

Müller, B., & Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specifi- cation during early embryogenesis. Nature 453(7198), 1094–1097. doi: https://doi.org/10.1038/nature06943

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3), 473–497. doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nicot, N., Hausman, J.-F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56(421), 2907–2914. doi: https://doi.org/10.1093/jxb/eri285

Odgerel, K., & Bánfalvi, Z. (2021). Metabolite analysis of tubers and leaves of two potato cultivars and their grafts. PLOS ONE 16(5), e0250858. doi: https://doi.org/10.1371/journal.pone.0250858

Peng, Y., Ma, W., Chen, L., Yang, L., Li, S., Zhao, H., Zhao, Y., Jin, W., Li, N., Bevan, M. W., Li, X., Tong, Y., & Li, Y. (2013). Control of Root Meristem Size by DA1-RELATED PROTEIN2 in Arabidopsis. Plant Physiology 161(3), 1542–1556. doi: https://doi.org/10.1104/pp.112.210237

Stiekema, W. J., Heidekamp, F., Dirkse, W. G., van Beckum, J., de Haan, P., ten Bosch, C., & Louwerse, J. D. (1988). Molecular cloning and analysis of four potato tuber mRNAs. Plant Molecular Biology 11(3), 255–269. doi: https://doi.org/10.1007/bf00027383

Theißen, G., Melzer, R., & Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143(18), 3259–3271. doi: https://doi.org/10.1242/dev.134080

Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J., & Gao, G. (2019). PlantRegMap: chart- ing functional regulatory maps in plants. Nucleic Acids Research 48(D1), D1104–D1113. doi: https://doi.org/10.1093/nar/gkz1020

Vanhaeren, H., Nam, Y.-J., De Milde, L., Chae, E., Storme, V., Weigel, D., Gonzalez, N., & Inzé, D. (2016). Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development. Plant Physiology 173(2), 1269–1282. doi: https://doi.org/10.1104/pp.16.01410

Vercruysse, J., Baekelandt, A., Gonzalez, N., & Inzé, D. (2019). Molecular networks regulat- ing cell division during Arabidopsis leaf growth. Journal of Experimental Botany 71(8), 2365–2378. doi: https://doi.org/10.1093/jxb/erz522

Xia, T., Li, N., Dumenil, J., Li, J., Kamenski, A., Bevan, M. W., Gao, F., & Li, Y. (2013). The Ubiquitin Receptor DA1 Interacts with the E3 Ubiquitin Ligase DA2 to Regulate Seed and Organ Size in Arabidopsis. The Plant Cell 25(9), 3347–3359. doi: https://doi.org/10.1105/tpc.113.115063

Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition se- quences of Dof transcription factors. The Plant Journal 17(2), 209–214. doi: https://doi.org/10.1046/j.1365-313x.1999.00363.x

Zluhan-Martínez, E., López-Ruíz, B. A., García-Gómez, M. L., García-Ponce, B., de la Paz Sánchez, M., Álvarez-Buylla, E. R., & Garay-Arroyo, A. (2021). Integrative Roles of Phyto- hormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. Frontiers in Plant Science 12(1), 659155. doi: https://doi.org/10.3389/fpls.2021.659155

Downloads

Published

2022-07-08

Issue

Section

Article

How to Cite

In silico promoter analysis and expression of the BIG BROTHER gene in different organs of potato. (2022). COLUMELLA – Journal of Agricultural and Environmental Sciences, 9(1), 31-41. https://doi.org/10.18380/SZIE.COLUM.2022.9.1.31

Similar Articles

1-10 of 44

You may also start an advanced similarity search for this article.