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Louis ANGURA!* — Dhimas Sigit BIMANTARA! — Tamds MAGYAR' — Erika BUDAY BODI' —
Zsolt Zoltan FEHER ! *

1: Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and
Environmental Management, University of Debrecen. *e-mail: angura.louis @agr.unideb.hu,
feher.zsolt@agr.unideb.hu

Abstract: The effectiveness of crop irrigation via sprinkler systems could be improved by environmental vari-
ability inherent to field conditions, thus leading to the sub-optimal irrigation of certain sections. To rectify this
discrepancy, in-situ soil characteristics were methodically correlated with the region’s hydrological circum-
stances and root zone, assigning a distinct level of uncertainty to each decision point. A stochastic geodatabase
was then generated, offering prospective applications in precision agriculture. The experimental agricultural
field in Nyirbédtor, Hungary, served as the reference point, with the constraints posed by variability being
surmounted through a dual-layer iteration of random sampling structures employing the sequential Gaussian
simulation (SGS) method. For this purpose, 25 physical, 9 chemical, and 11 soil microelements were exam-
ined from samples extracted from 105 boreholes in an 85-hectare cornfield while adopting a regular sampling
scheme within a 100 x 100 m grid. Each soil parameter estimation underwent the following process: 1. Orga-
nization of data and application of exploratory statistics for outlier identification; 2. Normal score transforma-
tion; 3. Exploratory variography; 4. Sequential Gaussian simulations, leading to the construction of a series of
plausible, equally probable realizations; 5. Computation of medians and the 95% confidence intervals. These
methodologies were deployed concerning the soil characteristics, with porosity being selected as the represen-
tative soil parameter for the Nyirbator cornfield. Porosity was our focus physical parameter because the micro
and macro soil structures greatly influence the hydraulic characteristics of the soil such as water infiltration,
hydraulic conductivity and moisture retention. Comparative assessments of the Hydrus 3D hydrological mod-
els of kriged and sequential Gaussian simulation surfaces were conducted. Results highlighted the efficacy of
sequential Gaussian simulation in encapsulating the field’s heterogeneity, and the accompanying uncertainty
served as a decision-making tool in the diversified water application across the field. The results were validated
using field data observations of soil moisture in the corn field from 2020 and 2021 respectively and nonethe-
less, the uncertainty divergence between the Hydrus outputs unveiled the knowledge deficit concerning actual
spatial patterns of soil porosity. The established workflow offers a cost-efficient dynamic methodology for
water resource management, potentially curtailing overall irrigation expenditure by variably applying water to
parcels based on uncertainty estimates.
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Introduction that reduces the efficiency of water applica-
tors such as sprinkler heads is the presence
of field variability that leads to some sub-
areas being over or under-irrigated. Tempo-
ral variability in this context is caused by the
type of irrigation device used, Spatial vari-

Water application through irrigation en-
hances crop productivity and contributes sig-
nificantly to the water balance of agricultural
fields. One of the most significant limitations
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ability is attributed to the type of crop grown
and soil in the farming unit, making it chal-
lenging to schedule uniform water distribu-
tion. The varying magnitudes of the exist-
ing physical properties create uncertainties
across the entire agricultural fields and thus
managing water resources in precision farm-
ing is paramount, for the right amount of
water at the targeted spot and time. Several
strategies of irrigation based on soil moisture
balance modelling and soil moisture content
sensing have been greatly used in scheduling
variable rate irrigation to improve water use
efficiencies (Li et al., 2018; Sui et al., 2015),
as well as enabling the monitoring of water
fluctuations within the soil profile (Zhao et
al., 2018). Current soil water balance meth-
ods heavily rely on meteorological weather
station data to forecast available soil mois-
ture, making them cheaper and are highly
preferred and used methods in precision irri-
gation (Sui & Vories, 2020). Other physical
models in relation to sprinkler applicators fo-
cus on improving water distribution patterns,
based on shape and nozzle size to improve
applicator efficiencies (Borges Junior & An-
drade, 2021; Hua et al., 2022). The use of
various static and real- time datasets in pre-
cise water applications can contribute to the
efficiency of agricultural decisions, with sev-
eral model-based irrigation methods being
used for scheduling irrigation (Bwambale et
al., 2023).

Soil physical and chemical properties are
among the factors greatly attributed to spa-
tial field variabilities, hindering the success-
ful automation of water application by irriga-
tion applicators. However certain soil proper-
ties possess specific spatial autocorrelations
with a distribution over space whose hetero-
geneity can be estimated (Nyengere et al.,
2023). Investigating spatial patterns for the
soil parameters is vital in modeling environ-
mental processes and sustainable agricultural
production regarding specific soil and wa-
ter management (Quigley et al., 2018), but
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our limited ability to observe environmen-
tal parameters requires incorporating a spe-
cific degree of uncertainty for each decision
to be completed (Bi et al., 2023). Since our
possibility to observe nature entirely is im-
possible, the observations can be considered
representative only to a limited extent and
beyond this extent, every determined value
is just an assumption. This assumption is
established using optimal spatial estimates,
such as some interpolated surfaces of the in-
put parameter. The spatial estimation of spe-
cific soil properties, such as porosity, can
be vital for identifying field parcels that re-
quire greater attention and management. Soil
porosity plays a pivotal role in water conduc-
tion, air circulation and as such, directly in-
fluences the hydraulic characteristics of soil
such as moisture retention, infiltration, and
hydraulic conductivity (Indoria et al., 2017).

Applying geostatistical techniques can be
useful in predicting and interpreting the
variables of given parameters at unsam-
pled points, whose map outputs can then be
used for decision-making (Faechner et al.,
2000). The most applied complex environ-
mental and numerical models typically ig-
nore the input dataset’s uncertainty; instead,
they have a built-in function. These inter-
polation techniques consider spatial correla-
tions between observed values as of great
importance in predicting values at unsam-
pled points (exact interpolators), and as such,
small values are overestimated and large val-
ues are under-estimated due to the igno-
rance of the estimated statistics of the values
(Deutsch & Journel, 1992). This reduces the
certainty for concrete decision-making due
to the blurred variability and spatial patterns
generated by these models.

These limitations in this study are over-
come using a two-level iteration of random-
ized sampling structures using the sequen-
tial Gaussian simulation to reproduce the
sample value statistics and show the spa-
tial continuity of the data (Deutsch & Jour-
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nel, 1992; Rossi et al., 1993). Our project
uses a stochastic modeling approach to esti-
mate the uncertainty of selected soil param-
eters over space. The uncertainty meant as-
suming measured values of soil parameters
to differ from reality (actual realizations).
Specifically, the study aimed at (i) analyzing
the spatial variability of selected soil phys-
ical properties that directly affect soil wa-
ter retention on a commercial agricultural
field, and (ii) improve automatized irriga-
tion efficiency through site specific interven-
tions based on uncertainty. As an example
to demonstrate the cruciality of uncertainty
in irrigation, this study based on the model
of soil moisture and water fluxes in a maize
field to further improve the optimization of
irrigation (Magyar et al., 2023).

Materials and Methods

The experimental study area

The experimental field is situated in the al-
luvial cone plains of the North-Western part
of Hungary (Fig 1). Sandy loam soils are the
dominant soil type, with corn grown exten-
sively for dairy feeding. Along the middle
field, boundaries are delineated by asphalt
roads, with an irrigation channel filled with
treated wastewater from the animal farms.
The groundwater table is about 2.5 m deep,
and the horizontal fragmentation of the land-
scape is low due to melioration and drainage
activities performed in the previous century.
On the hottest summer days, the maximum
temperature can exceed 34 °C, and about
350-360 mm of rainfall is received in the
summer half of the year. The region’s cli-
mate suits slightly heat-sensitive and water-
intensive agricultural crop production. Thus,
a Reinke 2060 PL sprinkler linear irrigation
system is installed to supplement water re-
quirements to crops during water scarcity pe-
riods as recommended by Tamads et al. (2018)
within the WATERAGRI project framework.
Data Collection

Spatially referenced data, such as soil field
perimeters, were meticulously extracted us-
ing ArcGIS Pro software, a highly advanced
and widely utilized geospatial processing
program. Coordinates were determined using
real time kinematic global positioning sys-
tem (RTK-GPS), which offers centimeter-
level precision in positioning, significantly
enhancing the accuracy of data collection
(Sun et al., 2010).

Soil samples were procured from 105 des-
ignated locations across an extensive 85-
hectare irrigated maize field. This sampling
was performed at two distinct strata, pre-
cisely at 30 cm and 60 cm depths, adhering
to a systematic sampling design arranged in
a 100 m-by-100 m grid (Fig 1). This reg-
ular grid-based sampling was employed to
ensure homogeneity in the data collection
process, thereby minimizing the introduction
of sampling bias and allowing a represen-
tative understanding of the spatial variabil-
ity within the field. Furthermore, the selected
grid size helped to obtain an optimal distri-
bution and patterns of soil properties without
losing significant information (Soulis, 2013).
In each location, soil samples were collected
from five distinct soil horizons, delineated
by depth: 0-20 cm, 20-40 cm, 40-60 cm,
60—80 cm, and 80—100 cm and analyzed for
their respective physical and chemical prop-
erties. This stratified approach to sampling
ensured comprehensive coverage of the soil
profile, allowing for the elucidation of pat-
terns and trends in soil properties across dif-
ferent depths, each of which may exert differ-
ent influences on water and nutrient dynam-
ics and, consequently, on crop productivity.

The array of the geodatabase associated with
the experimental field encompassed a broad
range of the soil’s physical and chemical pa-
rameters as depicted in Fig 2. These param-
eters offered valuable insights into the inher-
ent and derived properties of the soil, influ-
encing critical factors such as water hold-
ing capacity, nutrient availability, and soil
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Figure 1: Map showing the location of the experimental site in Nyirbator, Hungary.
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Figure 2: Geodatabase of the Nyirbator cornfield.

structure, all of which are critical determi-
nants of crop growth and productivity. The
extensive geodatabase, a comprehensive and
integrated repository of geographically ref-
erenced data, was constructed incorporat-
ing these crucial soil parameters. This in-
corporation was achieved via a systematic
collation and assimilation process, ensur-
ing accurate alignment of the non-spatial
data with the corresponding spatial data. The
geodatabase was seamlessly integrated into
the Geographic Information System (GIS)
project, a powerful toolset for manipulating,
analyzing, and displaying geospatial data. In-
tegrating the geodatabase within the GIS en-
vironment facilitated an efficient framework
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for storing and retrieving diverse soil-related
data (Kabolizadeh et al., 2023). This frame-
work provided a robust platform for the rig-
orous analysis of these multi-dimensional
datasets, enabling extracting meaningful pat-
terns, relationships, and trends. Furthermore,
it served as a sophisticated tool for interpret-
ing the data, allowing the translation of raw
data into actionable information and knowl-
edge. This dynamic amalgamation of non-
spatial data into a GIS project allows for
a more comprehensive and granular under-
standing of the complex interactions and re-
lationships between various soil properties
and their influence on agricultural practices
and outcomes.
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Sequential Gaussian simulation

This manuscript has an abridged exposi-
tion of the employed model features, with
Deutsch and Journel (1992) and Goovaerts
(1997) providing more expansive elucida-
tions. For this investigation, point source soil
data were enlisted, and soil porosity was se-
lected as the demonstration variable, denoted
as P at disparate locations symbolized as y.
The key to successful irrigation nests on hav-
ing an in-depth knowledge of the micro and
macro soil structure as this greatly influences
the movement of water in the soil. Topsoil for
many soil types is usually unsaturated and
thus an investigation of its voidness is usu-
ally vital for water management and assess-
ing the hydraulic behaviors within the soil
(Wang et al., 2023).

The multivariate distribution of P(y) at a
specified count (n) of locales is articulated
as yl,y2,y3...yn and can be represented via
the function:

)

Equation (1) can subsequently be expanded
into the product of its location-specific (n)
univariate conditional distributions:

[fOyl...,yn;pl,... pn)

fOL,..ympl,... pn) = f(y1; pl)xf(y2; p2|

P(y1) = pl)x...f(yn; pn|
P(yt)=Pt,t=1,....n—1)

2)
For instance, the probability distribution of
porosity at the second location, P(y2), as-
suming the porosity value at the first lo-
cation P(yl) to be pl, is depicted as
f(y2; p2P(y1) = p1). A random sequence of
the prior univariate conditions generates a re-
alization of P(y), indicated as p(y), thus es-
tablishing novel conditions for the porosity
samples. The algorithm uses the distribution
f(yl;pl) to randomly select a realization,
yl, to represent P(yl). This process is iter-
atively executed until the final distribution,
fn;pnP(yt) =Pt,t =1....,n—1), is con-
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ditioned, with the final realization, pn, ran-
domly extracted from the conditional distri-
bution.

The execution of the sequential Gaussian al-
gorithm was achieved by adhering to the fol-
lowing procedural steps (Deutsch & Journel,
1992):

1. The initial dataset representing soil
porosity was subjected to a normal
score transformation. This step, a
form of data standardization, aimed
to convert the original, irregularly dis-
tributed porosity data into a normal-
ized dataset, consequently facilitating
subsequent stages of analysis.

2. Subsequently, a grid was superim-
posed onto the transformed data
points. This grid establishment step
acted as a preparatory phase for the
spatial analysis, providing a structured
format that enabled the accurate and
precise localization of data points.

3. Grid nodes, marking the intersections
of grid lines, were systematically iden-
tified, and subjected to a simple krig-
ing estimation procedure. Simple krig-
ing is a geostatistical method, lever-
aged spatial autocorrelation within the
data to provide an unbiased estimation
of values at unsampled grid nodes.

4. The local probability distribution at
each node was defined by utilizing the
expected values and the kriging vari-
ances. This step allowed the assign-
ment of a distribution to each grid
node, providing a probabilistic under-
standing of the soil porosity at each lo-
cation.

5. The algorithm then randomly selected
values from these defined probability
distributions to be assigned as the grid
node values. This stochastic process
ensured that the assigned values appro-
priately reflected the inherent variabil-
ity and uncertainty within the dataset.

6. The entire procedure was iteratively
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carried out for all the grid nodes. This

exhaustive approach ensured that the

complete spatial extent of the field was

covered, producing a comprehensive

spatial representation of soil porosity.
After completing these steps, multiple
equally probable spatial distributions of
porosity P(y) were generated. These distri-
butions, also known as stochastic images
or realizations, represented varying potential
states of soil porosity across the field, reflect-
ing this soil property’s inherent spatial vari-
ability and uncertainty (Fig 3).

Results and discussion

The inaugural step in the data analysis pro-
cess was ascertaining the vertical distribution
and the associated probability of porosity
data throughout the soil profile (Fig 4). The
process aimed to comprehend the changes
in porosity values with increasing depth,
thereby providing a vertical profile of soil
porosity. An assessment of median porosity
values at the 60 cm depth reveals a sym-
metrical distribution pattern (Fig 4b). This
symmetrical dispersion signifies a central
tendency in the dataset, where the bulk of
the data points clusters around the median,
demonstrating the relatively homogeneous
nature of soil porosity at this depth.

Further scrutiny reveals the mean poros-
ity value at 30 cm depth to be approxi-
mately 38.46%, while the same at 60 cm is
marginally lower at 38.3%. A detailed exam-
ination of these values and the correspond-
ing graphs insinuates a high probability that
most porosity values cluster around 38.3%
at the 60 cm depth. This indication of a po-
tential central tendency reinforces the under-
standing of soil porosity distribution at this
depth. Additionally, the insignificant stan-
dard deviation associated with the porosity
values at the 60 cm depth suggests a high
degree of consistency within the dataset.
This implies that 95% of the porosity val-
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ues are expected to lie within the 38.34+-2.9%
range. This calculated range encapsulates the
spread of porosity values around the mean,
thereby providing a measure of the data vari-
ability and offering further insights into the
overall uncertainty of the soil porosity distri-
bution.

The spatial continuity of soil porosity was
examined by applying semi variograms,
which were utilized to visually represent the
variation of the soil parameter across the spa-
tial extent of the field (Fig 5). This geostatis-
tical analysis method facilitated identifying
trends in spatial continuity in specific orien-
tations.

A substantial degree of spatial continuity in
soil porosity was discerned, extending in the
northeastern and northwestern direction of
the field at 60cm and 30 cm depth respec-
tively. Conversely, a markedly smaller de-
gree of continuity was detected in the south-
western direction at 60 cm and at 30 cm
depth stretching from west to the eastern di-
rection of the field. These distinct patterns
of spatial continuity reflect the impact of an-
thropogenic factors that have influenced soil
characteristics and the resultant spatial dis-
tribution of higher porosity values through-
out the field. In areas exhibiting high soil
porosity, it was inferred that the water de-
mand would likely be elevated due to highly
porous soils’ reduced moisture retention ca-
pacity. This information provides invaluable
insights for effectively managing water re-
sources during irrigation. Specifically, it al-
lows for identifying areas necessitating more
frequent or higher volumes of water appli-
cation, facilitating a targeted approach in ir-
rigation management that accommodates the
spatial variability in soil porosity.

Figure 6 presents a spatial autocorrelation
analysis of the simulated porosity values.
The x-axis of this figure represents the dis-
tance separating individual sample points. At
the same time, the y-axis denotes the semi
variance, a metric quantifying the degree of
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(b)

Figure 3: Simulation Workflow: Grid nodes and sample points (a); the local probability dis-
tributions at each node (b) and the Resultant 100 Equally Probable Realizations (c).
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Figure 5: Semi variogram map showing spatial continuity of soil porosity at 30 cm and 60

cm depth.

spatial dependency between pairs of porosity
samples. This analysis provides an additional
layer of understanding regarding the spatial
structure of soil porosity across the field, fur-
ther contributing to the optimization of water
management strategies.

In Figure 6. (a) and (b) respectively, an ex-
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amination of soil porosity at a lag distance
of 240 m and 668.3 m reveals the cessation
of spatial autocorrelation amongst soil poros-
ity values. Correspondingly, there is a termi-
nation of the increase in semi variance ob-
served at these distances. This cessation sig-
nifies that beyond these distances, the spatial
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Figure 6: Spatial autocorrelation of soil porosity values at 30 cm and 60cm depth.

distribution of soil porosity values no longer
exhibits the pattern of correlation previously
observed closer to the surface. This pattern,
characterized by a high degree of spatial au-
tocorrelation amongst nearby points, signi-
fies that the soil porosity values are more
similar at shorter distances than at greater
separations. Thus, observations positioned
closer to each other exhibit a lower semi vari-
ance, indicating a higher correlation, as com-
pared to the semi variance and correlation of
more distantly positioned observations.

This trend, evidenced by the leveling of the
semi variance, informs us that the spatial
continuity of soil porosity observed at the
shallower depth ceases at 240 m and 668.3
m distance within the agricultural field at 30
cm and 60 cm depth respectively. This criti-
cal observation can significantly inform wa-
ter management strategies, particularly in de-
termining the depth, distance and intervals at
which irrigation is most effective, consider-
ing the variable porosity and spatial distribu-
tion.

Comparison of alternative porosity estima-
tions

A comprehensive series of one hundred sim-
ulations for porosity values as well as other
physical and chemical parameters within the
constructed geodatabase were undertaken,
encompassing an extensive spatial area of
850 mx1000 m, equivalent to 85 Ha for
all the variables. This simulation suite in-
volved assigning values and normal scores
to several nodes within the designated grid,
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each of which was subjected to an intricate
simulation process. The grid node simula-
tion was performed using the simple krig-
ing interpolation method coupled with apply-
ing anisotropic semi variograms. This tech-
nique enabled the systematic calculation and
projection of porosity data across the grid
based on known data points, accounting for
anisotropy or the directional dependence of
spatial continuity.

Each of these simulated realizations pos-
sesses an equal probability of occurrence
and a high degree of likelihood. As such,
the mean of the values at each grid node
from all simulations, termed E-type estima-
tions (ensemble average mapping), was cal-
culated to provide a comprehensive spatial
representation of the porosity data and all
other parameters (Fig 7). These E-type es-
timations are consolidated outcomes of the
multiple probable simulations and provide a
spatially averaged overview of soil porosity
across the field. The resultant E-type esti-
mations divulge the spatial configuration of
the mean for all the 100 equiprobable sim-
ulations, offering a graphical representation
on the maps. These maps provide invalu-
able insights into the spatial variation of soil
porosity across the field, facilitating the im-
plementation of site-specific farm manage-
ment decisions (Faechner et al., 2000). This
precise and comprehensive overview of spa-
tial patterns can aid in optimizing irrigation
strategies, considering the spatial variability
of soil porosity.
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Figure 7: Estimation by Simple Kriging (A), The expected value of 100 stochastic images
based on SGS (B), the width of the confidence interval for porosity Estimation (C).

Depicted in Figure 7 (a) and (b) are the
representations of the Kriged and Sequen-
tial Gaussian Simulation (SGS) realizations,
respectively, both demonstrating analogous
spatial patterns due to low degrees of spa-
tial interpolation. A prominent feature shared
by both representations is the existence of
high porosity values in the central areas of
the field. This observation can be attributed
to soil conditions characterized by larger par-
ticle size distributions, inherently leading to
high soil porosity within these regions. Nev-
ertheless, the model predicts moderate to low
porosity values in other field regions, contin-
gent upon the spatial distribution and prox-
imity of specific soil physical parameters.
Beyond the determined range, these porosity
values are observed to be independent. Con-
sequently, there are instances where higher
values may be predicted while lower poros-
ity values may be derived in other scenar-
10s. Such fluctuations highlight the inherent
variability in soil physical properties across
the field. Moreover, Figure 7 (C) presents the
confidence intervals of the simulated poros-
ity values, effectively illustrating areas of
heightened uncertainty. In regions lacking
sufficient observational data, an increase in
uncertainty is evident. This uncertainty stems
from a dearth of information regarding the
field’s specific soil conditions, reinforcing
the necessity of further soil sampling to miti-
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gate these uncertainties and enhance the pre-
cision of soil porosity predictions.

Figure 8 exhibits the outcomes of 100 three-
dimensional (3D) Hydrus estimations ob-
tained using 100 distinct yet equiprobable
porosity estimations as input grids. Discrep-
ancies in the outputs of the Hydrus model
highlight the impact of limited knowledge
pertaining to the inherit spatial patterns of
soil porosity. In the simple kriging approach,
the average was taken outside the range
of known values. Conversely, the sequential
Gaussian simulation (SGS) algorithm aimed
to preserve variations within the datasets,
thus offering a more practical means of cap-
turing uncertainties and variabilities in soil
porosity.

SGS, as demonstrated in the results, show-
cased minimal heterogeneities within the
field, effectively representing the spatial
continuity of porosity following the corre-
sponding locations. In contrast, the Kriging
method underestimated larger porosity val-
ues while overestimating smaller ones. This
disparity underscores the inherent limitations
of kriging in accurately capturing the true
magnitude and distribution of soil porosity.
Using SGS allows for a more comprehensive
depiction of the spatial variations and uncer-
tainties in soil porosity. It provides valuable
insights into the spatial connectivity and con-
tinuity of porosity across the field. In con-
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Figure 8: Comparison of the results of the kriged (A) and simulated surfaces(B).

trast, kriging falls short of capturing these
essential aspects due to its inherent assump-
tions and limitations. These findings empha-
size the significance of employing advanced
modeling techniques like SGS, which offer
a more robust and accurate representation of
the spatial patterns and uncertainties in soil
porosity. Such methods enable researchers
and practitioners to make more informed de-
cisions regarding soil management practices
and water resource optimization in agricul-
tural systems.

Comparison of the results to the Water bal-
ance of the Hydrus model

Figure 9 presents the outcomes of optimal
soil moisture estimations using the Hydrus
2D model and sequential Gaussian simu-
lation (SGS). The Hydrus 2D model was
validated using field data observations of
soil moisture in the corn field from 2020
and 2021 respectively. Notably, the simu-
lated moisture content is closely aligned with
the actual measured soil moisture content,
indicating the efficacy of the modeling ap-
proaches (Magyar et al., 2023). The grey
area in the figure represents the 95% con-
fidence interval, with thicker areas indicat-
ing a higher degree of uncertainty in es-
timating soil water content (Karandish &
Simiinek, 2019). During the growth period
of corn from May to August, a noticeable
decline in soil moisture content was ob-
served from planting to physiological ma-
turity. This pattern aligns with established
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knowledge regarding the water requirements
of corn crops, as water consumption in-
creases during the active growth stages and
diminishes towards maturity. The threshold
porosity probability values derived from the
simulations, particularly at 30 and 60 cm
depths, are particularly informative during
dry periods. These values hold the poten-
tial to reflect the specific water demands of
the crops, considering the unique character-
istics of the soil profile. Consequently, these
estimations serve as valuable inputs for in-
formed farm management decisions, aiding
in optimizing irrigation strategies and re-
source allocation. By utilizing the simulation
outputs and the generated threshold poros-
ity probability values, practitioners and farm-
ers can make data-driven decisions regarding
irrigation scheduling, ensuring that water is
applied judiciously and following the vary-
ing water demands of the crops throughout
the growing season. This approach allows for
more efficient water management, reducing
unnecessary water usage and promoting sus-
tainable agricultural practices.

Conclusion

Soil physical properties, especially porosity,
play vital roles in the hydraulic behavior and
distribution of water across the soil media.
The knowledge of porosity variability within
irrigated agricultural fields can help in the
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Figure 9: Measured and simulated soil moisture Contents for the Nyirbétor site in the vege-

tative period 2021 (Magyar et al., 2023).

development of effective water use strategies
to minimize water wastages.

The spatial patterns generated by the sequen-
tial Gaussian simulation (SGS) were lever-
aged to delineate specific parcels within the
cropland where soil porosity was projected
to directly or indirectly impact water use
and management. These simulations eluci-
dated the uncertainty associated with soil pa-
rameters, specifically porosity, by revealing
areas characterized by varying porosity, in-
cluding high, low, and moderate values. The
output that best represented the initial data
was selected from the numerous realizations
obtained from the simulations. This optimal
output was determined by considering the
general agreement with the observed data
and the ability to capture the spatial variabil-
ity and uncertainty in the porosity distribu-
tion.

The uncertainty analysis was conducted
based on the confidence intervals derived
from the expected porosity values. These
confidence intervals provided a quantifiable
measure of uncertainty, offering valuable in-
sights for irrigation management decisions.
By utilizing this uncertainty information, ir-

DOIL: https://doi.org/10.18380/SZIE.COLUM.2024.11.1.05

rigation practices can be adjusted, with par-
ticular attention given to areas with poros-
ity values below threshold limits or excep-
tionally high values. This approach enables a
targeted and site-specific approach to irriga-
tion management, focusing on areas where
the soil porosity may pose challenges or
opportunities for effective water use. Wa-
ter resources can be utilized more efficiently
by tailoring irrigation strategies to address
the variability in porosity values, ensuring
that water application aligns with the spe-
cific needs of different areas within the crop-
land. This proactive management approach
contributes to sustainable water management
practices, optimizing crop productivity while
minimizing unnecessary water usage.

Recommendations

The physical and chemical nature of soil
keeps on changing over time due to increased
physical, chemical, and biological activities,
altering the nature of soil. For high effi-
ciency to be achieved during irrigation, we
recommend an annual soil sampling, testing
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and simulations interval to keep in check of
the continuous soil formation, physical and
chemical alterations.
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