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Abstract: With the rapid development of imaging technology, computing power, and algorithms, computer vi-
sion has revolutionized thoroughly plant phenotyping and is now a major tool for phenotypic analysis. Those
reasons constructed the base for developing image-based plant phenotyping methods, it is a priority for the
complementary or even alternative to the manual measurement. Nonetheless, the use of computer vision tech-
nology to analyze plant phenotypic traits can be affected by a lot of factors such as research environment,
imaging system, and model selection. The field of plant phenotyping is developing rapidly at the moment.
Image-based plant phenotyping has stated proven to be in precision agriculture, providing a quantitative basis

for the description of plant-environment interactions.
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Introduction

Open-source image analysis software with
plant phenotyping using computer vision is
a key source in hydroponic cultivation. The
former is performed in an outdoor and in-
door installation or in a greenhouse under
controlled conditions (Quigley et al., 2009).
It may be carried out within a facility that
includes providing light for plant growth, ac-
cessibility to the nutrient solution, and elec-
trical power. The growing plants are set in
a growth chamber and periodically soaked
with nutrient solution. In addition, the hy-
droponic system gives the chance to control
the entire growth chamber environment pre-
cisely. The hydroponic system is a modern
technique of agriculture that is still under
development. Recently, limited studies have
been performed which suggested that hydro-
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ponics is performed without soil or any solid
media; thus, the main observed problems to
tackle the growth process. Zhou et al. (2016)
conducted a study titled "ROSCC: An Effi-
cient Remote Sensing Observation-Sharing
Method Based on Cloud Computing for Soil
Moisture Mapping in Precision Agriculture."
This research was published in the IEEE
Journal of Selected Topics in Applied Earth
Observations and Remote Sensing. The pa-
per focused on the development of a method
called ROSCC, which utilizes cloud comput-
ing to enhance remote sensing observation-
sharing for soil moisture mapping in preci-
sion agriculture. The authors present their
findings and discuss the efficiency and ef-
fectiveness of the proposed method in accu-
rately mapping soil moisture levels, which is
crucial for optimizing agricultural practices
and improving crop productivity.
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The groundbreaking work of Castellé Ferrer
et al. (2017) introduced the Personal Food
Computer, a novel device designed for pre-
cise monitoring and management of environ-
mental conditions to enhance crop cultiva-
tion. It was reported that the hydroponic sys-
tem provides better control of plant growth
and nutrient availability and prevents the
plant from various diseases and root rot.
However, during plant growth from sowing
to harvest time, the method adopted in the
hydroponic system requires expertise in do-
main knowledge of plants (Fox, 2006), envi-
ronment control, and operations to maintain
and control the growth of the plant.

In the Proceedings of the Future Tech-
nologies Conference (FTC) 2018, Ferrer et
al. (2018) introduced the Personal Food
Computer as an innovative device for
controlled-environment-agriculture, revolu-
tionizing food production methods.

Materials and Methods

An open-source image analysis software
with an aimed package for plant phenotyping
using computer vision was solicited for our
experiment. The software is called PlantCV
and is built based on modular functions, it is
applicable to a wide range of plant types and
different imaging systems, and it has multi-
ple functions where the use of each one is
centered on the context of an overall image-
processing workflow. Nonetheless, the soft-
ware is new and under continuous develop-
ment where new functionalities are added on
a regular basis. PlantCV currently supports
the analysis of standard RGB color images,
standard grayscale images, thermal infrared
images, grayscale images from chlorophyll
fluorescence imaging systems, and hyper-
spectral images. Support for additional im-
age types is under development. The modu-
lar functions of which PlantCV is composed
can be rearranged and adjusted quickly and
easily. Workflows do not need to be linear.
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A global variable "debug" allows the user to
print out the resulting image. The debug has
three modes: either None, ’plot’, or ’print’.
If set to ’print’ then the function prints the
image out to a file, or if using a Jupyter
notebook we could set debug to ’plot’ to
have the images plot to the screen. Debug
mode allows users to visualize and optimize
each step on individual test images and small
test sets before workflows are deployed over
whole datasets. In order to run the pant CV
code, we need to previously have two re-
quired inputs:

1. Image: Plant CV process the Images
regardless of what type of camera was
used, particularly in our project, we
used Raspberry PI camera. The pro-
cessing works better if the images are
of good lighting and the background’s
color is different from the plant’s ma-
terial.

2. Output directory: We need to select
and name an output directory where
the output images from each step will
be saved.

Figure 1: Input image

In the input image as shown in Figure 1, we
have the input image. As we mentioned be-
fore, our particular image was captured by
Raspberry PI camera, this means that Plant
CV works on images not captured with spe-
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cialized VIS image capture conditions. In our
project, we used Plant CV to decompose the
contours that constitute each plant. Our main
interest was to use plant processing, there-
fore we needed to sort out contours and clus-
ter them together in some way. In order to
be able to arrive at the final result, which
is color values. There are several steps that
we need to follow until color values for each
plant pixel are processed.

If the background is foreseeable, the pro-
gram starts with defining the background.
For our particular image, the program did
some pre-masking of the background, in or-
der to keep all plant information while re-
moving the background. Thresholding is the
simplest method of segmenting images, as
it can be used for creating binary images.
Generally, we need to select one of the color
channels before performing a binary thresh-
old on any image. The plant CV code as
shown converts the RGB image to HSV color
space and then extract the ’s’ or saturation
channel, but if some of the plant’s informa-
tion is missed or disappeared then the result-
ing channels may be combined in more steps.

The code below shows the first section of
Plant CV code:

#!/usr /bin/env python

import os

import argparse

from plantcv import plantcv as
—pcv

### Parse command-line
—rarguments

def options ():

parser = argparse.
—ArgumentParser (
—description="Imaging
—processing with opency )

parser.add_argument ("-i", "
~>-image", help="Input image
— file. , reguired=True)

parser.add_argument ("-o", "--
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—cutdir", help="0Output
~+directory for image files.
— , required=False)
parser.add_argument ("-r", "--
—~result , help=rresult

—file. , required=False)

parser.add argument ("-w", "-
— writeimg ", help="write
—out images. , default=
<—+False, action="store true"
—)

The code starts by importing necessary pack-
ages of libraries, and by defining the inputs.
One important thing before running the pro-
gram is to make sure that plant CV is in-
stalled. We easily installed it from PyPI, by
running the following command in the termi-
nal as an administrator:

<pip install plantcv>.
The code of the main code is the following:

def main ():

# Get options

args = options ()

pcv.params.debug = args.debug #
— set debug mode

pcv.params.debug_outdir = args.
—outdir # set output
—directory

# Read image

img, path, filename = pcv.
—~readimage (filename=args.
—image)

Figure 2: lab-blue-yellow
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The returns are img, path, and image file-
name. The filename is the image file to be
read which includes the path. The image pre-
sented in Figure 2 of the PlantCV research
showcased a lab environment where the plant
is visualized using a color representation of
blue and yellow. The command reads the
image into numpy ndarray(NumPy is an N-
dimensional array type called ndarray.) and
splits the path and image filename. This is a
parameter of the OpenCV function imread.

In the following command, we convert RGB
to HSV and extract the saturation channel.

The code to read the image is the following:

# Read image

img, path, filename = pcv.
—~readimage (filename=args.
—image)

# Convert RGB to HSV and
<+extract the saturation
<channel

pcv.rgb2gray_hsv (rgb_img=
—img, channel=’s?’)

The HSV color space has 3 channels: ‘h’
the Hue, ‘s’ the Saturation, and the’v’ Value,
or intensity. The Hue channel represents the
"color".

The code of the saturation channel from orig-
inal RGB image converted to HSV color
space:

# Convert RGB to LAB and
—>extract the Blue channel
pcv.rgb2gray_lab (rgb_img=

<—img, channel=’b’)

# Threshold the blue image

b_thresh = pcv.threshold.binary

(gray_img = b, threshold-160,
—max_value -255, object_type
—=’1light’)

b_cnt = pcv.threshold.binary

(gray_img=b, threshold-160,
—max_value=255, object_type
—=’1light’)

b=

In order to threshold the saturation image, we
apply the following code:
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# Threshold the saturation
—image

s_thresh = pcv.threshold.binary
— (gray_img=s, threshold
-85, max_value=255,
—object_type=’1light’)

The saturation channel is thresholded, which
means the code created a binary image from
a gray image based on the threshold values.
Our object in this project was the plant which
is light. The threshold creates a binary image
from the gray image based on the threshold
values that can be adjusted depending on the
quality of our image, in our case used 85 for
the threshold and 255 pixels as a maximum
value.

In the next step, again depending on the level
of lighting, the code can be modified to bet-
ter manipulate the background. The original
image is converted from an RGB image to
LAB color space and the blue-yellow chan-
nel is extracted.

The image as shown in figure 3 is then again
thresholded and there is an optional fill step
that the code runs or not depending on the
image, in our case, it was not needed.

Figure 3: Blue-yellow channel from LAB
color space from the original image.
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Figure 4: Binary Threshold blue-yellow
channel image.

Figure 5: binary_threshold_128

After this step, the resulted in the binary im-
age as in figure 4 was applied as an image
mask over the original image, to remove as
much background with simple thresholding
in figure 5 without missing out any plant ma-
terial.

The following code is for masked image with
background removed.

# Apply Mask (for VIS images,
—mask_color=white)

masked = pcv.apply_mask(img=img
—, mask=bs, mask_color=’
—white’)

DOIL: https://doi.org/10.18380/SZIE.COLUM.2023.10.1.49

Figure 6: Masked image with the back-
ground removed

After getting the masked image in figure 6
with the background slightly removed. The
next step from the code is capturing the plant
in the masked image from the last figure.
The masked green-magenta and blue-yellow
channels are taken out. The two channels are
thresholded to show different sections of the
plant.

The small objects are filled. The image taken
has very green leaves, but often (especially
with stress treatments) there are yellowing
leaves, red leaves, or regions of necrosis. The
different thresholding channels capture dif-
ferent regions of the plant, then are combined
into a mask for the image that was previously
masked. In the following the applied code
of RGB to LAB conversion code and the re-
sulted image is shown in figure 7:
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Figure 7: Thresholded LAB channel image

# Convert RGB to LAB and
~—rextract the Green-Magenta
—and Blue-Yellow channels

masked_a = pcv.rgb2gray_lab(
—rgb_img=masked, channel=’a
—7)

masked_b = pcv.rgb2gray_lab(
—rgb_img=masked,
—7)

# Threshold the green-magenta
<—rand blue images

maskeda_thresh = pcv.threshold.
—binary(gray_img=masked_a,
<threshold=115, max_value
=255, object_type=’dark’)

maskeda_threshl = pcv.threshold
—.binary(gray_img=masked_a,
<+ threshold=135, max_value
=255, object_type=’light’)

masked_thresh = pcv.threshold.
—binary(gray_img=masked_b,
<—+threshold=128, max_value
<$=255, object_type=’light?’)

channel=’Db

# Join the thresholded
—~saturation and blue-yellow
— images (OR)

abl = pcv.logical_or(bin_imgl=
—~maskeda_thresh, bin_img2=
—masked_thresh)

ab = pcv.logical_or(bin_imgl=
—maskeda_threshl, bin_img2=
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<sabl)

# Fill small objects
ab_fill = pcv.fill(bin_img=ab,
—+size=200)

# Apply mask (for VIS images,
—mask color=white)

masked2 = pcv.apply_mask(img=
—+masked, mask=ab_fill,
—mask_color=’white’)

Figure 8: Region of interest drawn into

For the identification process within the
image, Plant CV is based on contours in
OpenCV. A rectangular region of interest is
determined as in figure 8.

The code defining region of interest:

#0bject combine:

obj, mask =
—object_composition (img=img
—, contours=roi_objects,
—hierarchy=hierarchy3)

kept objects
pcv.

Once the region of interest has resulted, the
code keeps then the rest of the image over-
lapping with the region inside the rectangle
or cuts the objects to the shape of the region
of interest. In our particular case, as seen in
the following image. The isolated items now
should all be plant material that we are inter-

DOI: https://doi.org/10.18380/SZIE.COLUM.2023.10.1.49


https://doi.org/10.18380/SZIE.COLUM.2023.10.1.49

Columella — Journal of Agricultural and Environmental Sciences

Vol. 10. No. 1 (2023)

ested in. There can be more than one object
that makes up the material of the plant, some-
times leaves appear in the images as separate
objects.

Figure 9: Outline (blue) of combined objects
on the image.

The image in figure 9 represents an outline
of combined objects, indicated by the blue
lines, overlaid on the original image. The
combined objects are a result of the previ-
ous image processing and analysis technique
applied through plantCV to the image data.
This outline helps us identify and visualize
the boundaries or contours of the objects de-
tected in the image, providing insights into
their spatial distribution.

The final step of the image analysis is to ex-
amine the plant material such as horizontal
height, shape, or color.
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Figure 10: Shape analysis output image.

The image in figure 10 represents the out-
put of shape analysis applied to an image.
It typically includes visualizations or graph-
ical representations that provide information
about the shapes of objects present in the im-
age. This includes the features as the contour
lines and bounding lines that help character-
ize the shapes and structures within the im-
age. The shape analysis output image serves
as a visual representation of the results ob-
tained from analyzing the shapes of objects,
aiding in understanding the spatial organiza-
tion and properties of the objects in the im-
age.

Discussion

Conducting a comprehensive analysis of a
plant’s characteristics, encompassing factors
such as its horizontal height, shape, and
colour, yields invaluable insights that can be
leveraged in advanced stages of plant recog-
nition and understanding its growth trajec-
tory. By scrutinizing these plant materials,
we acquire a wealth of useful information
that can be harnessed for diverse purposes,
including not only recognizing the plant it-
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self but also elucidating the various develop-
mental steps it undergoes.

In the publication "OpenAG: A Globally
Distributed Network of Food Computing" by
Harper and Siller (2015), featured in IEEE
Pervasive Computing, the concept of a glob-
ally distributed network of food comput-
ing is introduced. This innovative approach
leverages advanced technologies, such as
PlantCV and pervasive computing, to revo-
lutionize food production and address chal-
lenges in agriculture (Harper & Siller, 2015).
The utilization of PlantCV software has rev-
olutionized our ability to analyse images
captured through cutting-edge devices like
Raspberry PI. This software package, specif-
ically designed for plant phenotyping and the
application of phenomics technologies, in-
cluding PlantCV and image analysis, offers
promising solutions to overcome the chal-
lenges associated with phenotyping and en-
hance our understanding of plant charac-
teristics and growth processes (Furbank &
Tester, 2011), empowers researchers by pro-
viding a cohesive programming and docu-
mentation interface. Through PlantCV, an
extensive collection of image analysis tech-
niques sourced from diverse packages and
algorithms seamlessly converge, facilitating
an integrated and comprehensive approach to
image analysis.

Exploring the vast potential of an Internet
of Things (IoT)-based growing chamber sys-
tem in tandem with Global Positioning Sys-
tem (GPS) technology represents a fertile
area of research. The synergistic amalgama-
tion of these two domains opens up new
horizons in plant cultivation. By harnessing
the capabilities of IoT, we can accurately
detect and map the geographical locations
of green growing chamber users across the
globe. This spatial awareness not only en-
ables us to identify clusters of green grow-
ing chambers but also facilitates the gather-
ing of vital image analysis data. Such data,
once recorded and curated within an applica-
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tion, can be effortlessly shared among users,
fostering a community of practice where in-
dividuals can exchange invaluable insights
and best practices pertaining to optimal plant
growth. The study conducted by Abdullah et
al. (2016) exemplifies the tremendous poten-
tial of this approach in enhancing plant cul-
tivation methodologies and promoting sus-
tainable practices.

We can say that delving into the minute de-
tails of a plant’s material composition, en-
compassing attributes such as its horizontal
height, shape, and colour, provides a rich
tapestry of information that can be instru-
mental in various stages of plant understand-
ing and recognition. With the aid of sophis-
ticated software packages like PlantCV, re-
searchers can harness the power of image
analysis techniques, seamlessly integrated
from multiple sources, to unlock new in-
sights and correlations. Moreover, the advent
of IoT-based growing chamber systems cou-
pled with GPS technology holds tremendous
promise for the future of plant cultivation,
facilitating global collaboration, knowledge
sharing, and the adoption of sustainable prac-
tices.

In our experimer, as mentioned earlier we
followed several processes to get a pseudo-
colored image as figure 11 of our plant and
we were interested in calculating the Excess
Green Index (ExG) for a specific pixel within
the image. This index serves as a valuable
metric for assessing the vegetation’s health
and stress levels. To illustrate the calculation
process, let’s consider our scenario where we
have a dataset comprising 9 distinct plants(9
rockwool cubes), and our objective is to eval-
uate the vegetation quality for each individ-
ual plant. To achieve this, we need to perform
the Excess Green Index calculations sepa-
rately for each plant, utilizing their respec-
tive RGB images.

To calculate the Excess Green Index (ExG)
for each plant, we have followed these steps:

1. We began by converting the RGB image of
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each plant into the ExG index using the fol-
lowing formula: ExG = 2 x Green — Red —
Blue

By substituting the corresponding pixel val-
ues of the Green (G), Red (R), and Blue (B)
channels into the equation, we could obtain
the ExG index value for each pixel within the
plant region of interest.

2. Once the ExG values are computed for
all pixels within the plant region of interest,
we calculated the average ExG value for that
specific plant. This was accomplished by tak-
ing the mean of all the ExG values obtained
from the pixels within the plant’s region.

3. Finally, we compared the average ExG
value of each plant to a predetermined
threshold or range established for evaluat-
ing vegetation health. This threshold serves
as a benchmark against which the vegetation
quality of each individual plant can be as-
sessed. By analyzing the ExG values in rela-
tion to the threshold, we could identify vari-
ations or differences in the health of the indi-
vidual plants.

By performing these calculations for each
plant, we gained the ability to assess the
vegetation quality on an individual basis. A
comprehensive understanding of the char-
acteristics and health status of each plant
is achieved. This approach allows for tar-
geted analysis and evaluation of vegetation
attributes, as opposed to treating the plants
as a collective group.

The Excess Green Index (ExG) serves as
a valuable vegetation index, quantifying the
excess amount of green color present in an
image. By leveraging this index, researchers
and practitioners can gain insights into veg-
etation health and stress levels. It provides a
quantitative measure that reflects the abun-
dance of green color in relation to the red and
blue channels, offering valuable information
about the density and vigor of the plant ma-
terial.

By incorporating the Excess Green Index
into our analysis, we made informed deci-
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sions regarding plant health, stress manage-
ment, and overall vegetation quality. Here’s
an example of how we use the Excess Green
Index:

1. We obtained an RGB image of the
plant we wanted to analyze.

2. We convert the RGB image to the LAB
color space. This was done using the
image processing libraries of PlantCV
mentioned earlier.

3. We extracted the individual channels
from the LAB image: L (lightness), a
(green-magenta), and b (blue yellow).

4. We calculated the Excess Green Index
(ExG) using the previously stated for-
mula.

5. We applied a threshold to the ExG im-
age to segment regions with high veg-
etation density. This was done by se-
lecting an appropriate threshold value
to distinguish between healthy vegeta-
tion and other objects or background,
thanks to the palntCV opensource li-
braries, this step was not challenging.

6. We analysed the segmented regions to
extract relevant information and per-
formed further computations based on
our specific objective.

By utilizing the Excess Green Index, we
could identify and analyze areas of interest
in the image that correspond to healthy veg-
etation based on their green color character-
istics.

1. RGB values for the pixel of interest:

Red (R) =100
Green (G) = 150
Blue (B) = 80

2. We converted the RGB values to a
range of 0-1 by dividing each value by
255:

R =100/255=0.392
G =150/255=0.588
B =280/255=0.314

3. We calculated the Excess Green Index
(ExG):

ExG=2xG—-—R-B
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=2x0.588-0.392-0.314
=1.176-0.392-0.314
=0.47

The Excess Green Index (ExG) for the given
pixel is 0.47. This value represents the ex-
cess amount of green color in relation to the
red and blue channels. We performed similar
calculations for other pixels in the image to
obtain their corresponding ExG values.

The Excess Green Index (ExG) itself does
not provide a direct measure of vegetation
health or quality. Instead, it quantifies the rel-
ative amount of green color present in an im-
age compared to the red and blue channels.
It can be used as a vegetation index to assess
the density or presence of vegetation in an
image.

To determine whether the vegetation is good
or not based on the ExG value, we would typ-
ically need to establish a threshold or range
specific to experiment. This threshold can
be determined through experimentation, field
observations, or by comparing the ExG val-
ues of known healthy and unhealthy vegeta-
tion samples.

For example, in the conducted experiment,
we determined that vegetation with an ExG
value above 0.5 is considered good, and this
way we could compare the calculated ExG
value of a pixel or region to this threshold.
When the ExG value was above the thresh-
old, we classified it as healthy vegetation.
Conversely, when the ExG value was below
the threshold, we indicated less healthy or
sparse vegetation.

It’s important to note that the interpretation
of vegetation health based on an index like
ExG can vary depending on the specific con-
text, plant species, environmental conditions,
and other factors. Therefore, it is recom-
mended to validate and calibrate the thresh-
old values based on our specific application
and domain knowledge.

In conclusion, the Excess Green Index (ExG)
and PlantCV software play a significant role
in the monitoring of plant growth through
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advanced methods of phenotyping and im-
age analysis. The ExG serves as a valuable
vegetation index, providing insights into the
health, stress, and density of plants based on
their green color characteristics. By calcu-
lating the ExG for specific pixels or regions
within RGB images of plants, researchers
and practitioners can assess vegetation qual-
ity on an individual plant basis.

The PlantCV software, specifically designed
for plant phenotyping, enables the analy-
sis of images captured through various plat-
forms like Raspberry Pi. It provides a com-
prehensive collection of image analysis tech-
niques, integrating algorithms from different
source packages. This software offers a com-
mon programming interface and documenta-
tion, simplifying the implementation of im-
age analysis procedures for plant studies.

By utilizing PlantCV and the ExG index,
researchers can extract useful information
from plant materials such as height, shape,
and color, aiding in plant recognition and un-
derstanding growth stages. This integration
of advanced imaging techniques with phe-
notyping methods allows for non-destructive
and high-throughput analysis of plant traits.
In line with the Food and Agriculture Or-
ganization of the United Nations (FAO) re-
port on ’The state of food and agriculture:
Climate change, agriculture, and food secu-
rity’ (2016), the utilization of Excess Green
Index (ExG), PlantCV, and image analysis
techniques play a pivotal role in monitoring
plant growth and addressing the challenges
of climate change in the agricultural sector
(FAO, 2016).

Moreover, the combination of IoT-based
growing chambers and GPS systems presents
an exciting area of research. By tracking
the locations of green growing chamber
users on world maps, it becomes possible
to collect and share recorded image analysis
data. This exchange of information facilitates
thedissemination of good practices for grow-
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ing plants, contributing to advancements in
the field of plant science.

In summary, the utilization of the Excess
Green Index, along with PlantCV software
and emerging technologies, enables efficient
monitoring of plant growth. By employing
image analysis techniques and phenotyping
methods, researchers can extract valuable in-
sights regarding vegetation health, stress lev-
els, and growth patterns. This holistic ap-
proach to plant analysis fosters advance-
ments in agricultural practices, crop breed-
ing, and the understanding of plant physi-
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