Non usual experimental animals in the carotenoid research

Irodalmi áttekintés

Authors

  • Balázs Gregorits Szent István Egyetem, MKK, Állatélettani és Állat-egészségtani Tanszék, Gödöllő
  • Annamária Kerti Szent István Egyetem, MKK, Állatélettani és Állat-egészségtani Tanszék, Gödöllő
  • László Bárdos Szent István Egyetem, MKK, Állatélettani és Állat-egészségtani Tanszék, Gödöllő

Keywords:

carotenoids, retinoids, animal experiments

Abstract

Because of there are characteristic differences between animals and human in the carotenoid metabolism, the choose for the suitable model animal is very difficult. The absorption and tissue distribution is very similar to humans in Mongolian gerbils and ferrets instead of common laboratory rodents (mice, rats, rabbits). Japanese quail is a good model for the investigation of retinal carotenoid metabolism (macula degeneration, AMD). The immunological interaction and the cancer research are carried out in laboratory rodents and ferrets. Choosing for adequate model animals and experimental setup are hard tasks in the field of carotenoid study as well.

Author Biography

  • László Bárdos, Szent István Egyetem, MKK, Állatélettani és Állat-egészségtani Tanszék, Gödöllő

    corresponding author
    Bardos.Laszlo@mkk.szie.hu

References

Bárdos L. (1988): Az A-vitamin-szint összetevőinek (retinol, retinil-észter) és az összkarotin-tartalom mérése biológiai folyadékokból. Magy Áo. Lapja, 43. 113–116.

Beems R. B., Beek, L. et al. (1987): Subchronic (106-day) toxicology and nutrition studies with vitamin A and ß-carotene in Syrian hamsters. Nutr Rep Int., 35. 765–770.

Bendich A. (1989): Carotenoids and the immune response. J Nutr., 119(1) 112–115. https://doi.org/10.1093/jn/119.1.112

Bierer TL, Merchen NR, Erdman JW, Jr. (1995): Comparative absorption and transport of five common carotenoids in preruminant calves. J. Nutr.; 125(6) 1569–1577. https://doi.org/10.1093/jn/125.6.1569

Block G, Patterson B, Subar A. (1992): Fruit, vegetable, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer, 18(1) 1–29. https://doi.org/10.1080/01635589209514201

Boileau AC, Merchen NR, et al. (1999): Cis-Lycopene is more bioavailable than trans-lycopene in vitro and also in vivo in the lymph-cannulated ferret. J Nutr., 129(6) 1176–1181. https://doi.org/10.1093/jn/129.6.1176

Bond MG, Bullock BC et al. (1980): Myocardial infarction in a large colony of nonhuman primates with coronary artery athersclerosis. Am J Pathol., 101. 675–692.

Borel P, Grolier P, et al. (1998): Low and high responders to pharmacological doses of beta-carotene: proportion in the population, mechanisms involved and consequences on beta-carotene metabolism. J Lipid Res., 39(11) 2250–2260. https://doi.org/10.1016/S0022-2275(20)32480-9

Castenmiller JJM, West C E. (1998): Bioavailability and bioconversion of carotenoids. Annu. Rev. Nutr., 18. 19–38. https://doi.org/10.1146/annurev.nutr.18.1.19

Chew BP, Park JS, et al. (1998): Role of dietary ß-carotene in modulating cell-mediated and humoral immune response in dogs. FASEB J.; 12. A967(abs.)

de Pee S, Bloen MW, et al. (1998): Reappraisal of the role of vegetables in the vitamin A status of mothers in Central Java, Indonesia. Am J Clin Nutr., 68(5) 1068–1074. https://doi.org/10.1093/ajcn/68.5.1068

Fawzi WW, Herrera MG, et al. (1993): Vitamin A supplementation and dietary vitamin A in relation to the risk of xerophthalmia. Am J Clin Nutr., 58(3) 385–391. https://doi.org/10.1093/ajcn/58.3.385

Fox JG, Dangler CA, et al. (1997): Helicobacter mustelea-associated gastric adenocarcinoma in ferrets (Mustela putorius furo). Vet Pathol., 34(3) 225–229. https://doi.org/10.1177/030098589703400308

Furr HC, Clark RM. (1997): Intestinal absorption and tissue distribution of carotenoids. J Nutr Biochem.; 8(7) 364–377. https://doi.org/10.1016/S0955-2863(97)00060-0

Garthoff B. (2005): Alternatives to animal experimentation: The regulatory background Toxicol. Appl Pharmacol., 207(2) 388–392. https://doi.org/10.1016/j.taap.2005.02.024

Giovannucci E, Ascherio A, et al. (1995): Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst., 87(23) 1767–1776. https://doi.org/10.1093/jnci/87.23.1767

Humphrey JH, West KP, Jr Sommer A. (1992): Vitamin A deficiency and attributable mortality among under-5-year olds. Bull. WHO, 70. 225–232.

Kim HW, Chew BP et al. (1998): Modulation of cell-mediated immunity by dietary lutein in dogs. FASEB J.;12. A966 (abs.)

Kunert K, Fitzgerald MEC, et al. (1997): Activated microglia among the photoreceptors in aging birds. Invest Ophthalmol., 39. 561 (abs.)

Lakshmanan MR, Chansang H, Olson JA. (1972): Purification and properties of carotene 15,15'-dioxygenase of rabbit intestine. J Lipid Res., 13(4) 477–482. https://doi.org/10.1016/S0022-2275(20)39381-0

Lampert JM, Holzschuh J, et al. (2003): Provitamin A conversion to retinal via the ß,ß-carotene-15,15'-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development, 130(10) 2173–2186. https://doi.org/10.1242/dev.00437

Leal M, De Mejia, et al. (1998): Effect of Carotenoids on Cytotoxicity of T-2 Toxin on Chicken Hepatocytes In Vitro. Toxicol in Vitro, 12(2) 133–139. https://doi.org/10.1016/S0887-2333(97)00110-0

Lee ChM, Boileau AC, et al. (1999): Review of Animal Models in Carotenoid Research J.Nutr., 129(12) 2271–2277. https://doi.org/10.1093/jn/129.12.2271

Molldrem KL. Tanumihardjo SA, et al. (2004): Lutein Supplements Are Not Bioavailable in the Mongolian Gerbil While Consuming a Diet with or without Cranberries. Int J Vitam Nutr Res., 74(2) 153–160. https://doi.org/10.1024/0300-9831.74.2.153

Moon RC. (1989): Comparative aspects of carotenoids and retinoids as chemopreventive agents for cancer. J Nutr., 119(1) 127–134. https://doi.org/10.1093/jn/119.1.127

Nagasawa H, Mitamura T, et al. (1995): Effects of lycopene on spontaneous mammary tumor development in SHN virgin mice. Anticancer Res., 15. 1173–1178.

Pollack J, Campbell JM, et al. (1994): Mongolian gerbils (Meriones unguiculatus) absorb ß-carotene intact from a test meal. J Nutr.; 124(6) 869–873. https://doi.org/10.1093/jn/124.6.869

Poor CL, Miller SD, et al. (1987): Animal models for carotenoid utilization studies: evaluation of the chick and the pig. Nutr Rep Int., 36. 229–234.

Poor CL. Bierer TL, et al. (1993): The accumulation of a and b carotene in serum and tissues of preruminant calves fed raw and steamed carrot slurries. J Nutr., 123(7) 1296–1304. https://doi.org/10.1093/jn/123.7.1296

Potrykus I. (2001): Golden Rice and Beyond. Plant Physiol., 125(3) 1157–1161. https://doi.org/10.1104/pp.125.3.1157

Ribaya-Mercado JD, Fox et al. (1992): ß-Carotene, retinol and retinyl ester concentrations in serum and selected tissues of ferrets fed ß-carotene. J Nutr., 122(9) 1898–1903. https://doi.org/10.1093/jn/122.9.1898

Santos MS, Meydani SN, et al. (1996): Natural killer cell activity in elderly men is enhanced by ß-carotene supplementation. Am J Clin Nutr., 64(5) 772–777. https://doi.org/10.1093/ajcn/64.5.772

Snodderly DM, Handelman GJ, Adler AJ. (1991): Distribution on individual macular pigment carotenoids in central retina of macaque and squirrel monkeys. Investig. Ophthalmol Vis Sci., 32. 268–279.

Snodderly DM. (1995): Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr., 62(6) 1448S–1461S. https://doi.org/10.1093/ajcn/62.6.1448S

Stahl W, Sies H. (1998): The role of carotenoids and retinoids in gap junctional communication. Intnl.J Vit Nutr Res., 68. 354–359.

Sun J, Giraud DW, et al. (1997): ß-Carotene and -tocopherol inhibit the development of atherosclerotic lesions in hypercholesterolemic rabbits. Int. J Vitam Nutr Res., 67. 155–163.

Thomson LR, Toyoda Y, et al. (2002): Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail. Invest Ophthalmol Vis Sci., 43. 3538–3549.

Tyczkowski JK, Hamilton PB. (1986): Lutein as a model dihydroxycarotenoid for the study of pigmentation in chickens. Poult Sci., 65(6) 1141–1145. https://doi.org/10.3382/ps.0651141

Van Vliet T. (1996): Absorption of ß-carotene and other carotenoids in humans and animal models. Eur J Clin Nutr.; 50. S32–S37.

Youping G, Root MM, et al. (1997): Effects of carotenoid-rich food extracts on the development of preneoplastic lesions in rat liver and in in vivo and in vitro antioxidant status. Nutr Cancer, 27(3) 238–244. https://doi.org/10.1080/01635589709514532

Zechmeister L, Tuzsn P. (1934): Zur Kenntnis der tierischien Fettfarbstoffe Ber Dtsch Chem Ges., 67(2) 154–155. https://doi.org/10.1002/cber.19340670203

Published

2007-04-30

Issue

Section

Articels

How to Cite

Gregorits, B., Kerti, A., & Bárdos, L. (2007). Non usual experimental animals in the carotenoid research: Irodalmi áttekintés. Animal Welfare, Ethology and Housing Systems (AWETH), 3(1), 2-15. https://journal.uni-mate.hu/index.php/aweth/article/view/6886

Most read articles by the same author(s)