Size dependent crystal growth rate in case of colution crystallization

Authors

  • Ákos Borsos Pannon Egyetem, Mérnöki Kar, Vegyészmérnöki és Folyamatmérnöki Intézet, Folyamatmérnöki Intézeti Tanszék, 8200 Veszprém, Egyetem út 10. , University of Pannonia, Department of Process Engineering, H-8200 Veszprém, Egyetem út 10.
  • G. Béla Lakatos Pannon Egyetem, Mérnöki Kar, Vegyészmérnöki és Folyamatmérnöki Intézet, Folyamatmérnöki Intézeti Tanszék, 8200 Veszprém, Egyetem út 10. , University of Pannonia, Department of Process Engineering, H-8200 Veszprém, Egyetem út 10.

Keywords:

MSMPR crystallization, continuous crystallizer, population balance model, Moment method, size-dependent growth rate, parameter identification, simulation

Abstract

This paper proposes a model of continuous MSMPR crystallizer and compares with the experimental data. The mathematical model is suitable to describe size-dependent kinetic processes, which is able to modelling from the size-independent growth rate to the linear and nonlinear size-dependent growth rate by properly tuned parameters. The numerical solution is developed by computer algorithms in Matlab environment. The result of mathematical model can be solved in steady-state process. We were fitting the kinetic parameters in the model to the experimental data. Furthermore the influence of the parameter of size-dependent growth kinetic model to the population density function was analyzed. Our model was compared with some of widely used crystal growth kinetic model.

Author Biography

  • Ákos Borsos, Pannon Egyetem, Mérnöki Kar, Vegyészmérnöki és Folyamatmérnöki Intézet, Folyamatmérnöki Intézeti Tanszék, 8200 Veszprém, Egyetem út 10., University of Pannonia, Department of Process Engineering, H-8200 Veszprém, Egyetem út 10.

    corresponding author
    borsosa@fmt.uni-pannon.hu

References

Borsos, Á. (2009): Hűtéses kristályosítók modellezése és optimalizálása. Diplomadolgozat. Pannon Egyetem, Veszprém.

Lakatos, B. G. (2007): Population balance modelling of crystallisation processes. Hung. In: J. Ind. Chem., 35. 7–17.

Lakatos, B. G., Blickle, T. (1990): Semi-Analytical solution to the models of size- dependent crystal growth process in batch crystallizers. In: Inzynieria Chemiczna I Procesowa, 1. 7–16.

Li, X. S., Song, X. F., Liu, G. S. (2009): Size-dependent nucleation and growth kinetics model for potassium chloride –Application in Oarhan salt lake. J. of Crystal Growth, 311(11), 3167–3173. https://doi.org/10.1016/j.jcrysgro.2009.03.007

McCabe, W. L. (1929): Kinetics of Crystallization in solution. Ind. Eng. Chem., 21(2), 112–119. https://doi.org/10.1021/ie50230a004

Ramkrishna, D. (2000): Population Balances, Theory and Applications to Particulate Systems in Engineering. Academic Press: San Diego.

Randolph, A. D., Larson, M. A. (1988): Theory of Particulate Processes. Academic Press: New York. https://www.sciencedirect.com/book/9780125796521/theory-of-particulate-processes

Tavare, N. S. (1995): Industrial Crystallization. Process Simulation, Analysis and Design. Plenum Press: New York.

Ulbert, Zs. (2002): Kristályosítók dinamikus folyamatainak modellezése és szimulációja. PhD dolgozat, Veszprémi Egyetem, Veszprém.

Published

2011-12-12

How to Cite

Borsos, Ákos, & Lakatos, G. B. (2011). Size dependent crystal growth rate in case of colution crystallization. Acta Agraria Kaposváriensis, 15(3), 185-192. https://journal.uni-mate.hu/index.php/aak/article/view/7101

Most read articles by the same author(s)