Filtering Food Databases by Logaritmic Indeces on Quantity Constraints

Authors

  • Gábor Kusper Eszterházy Károly Főiskola, Számítástudományi Tanszék, 3300 Eger, Eszterházy tér 1. , Eszterházy Károly College, Department of Computer Science, H-3300 Eger, Eszterházy tér 1.
  • Szabolcs Márien Wit-Sys Zrt., 1036 Budapest, Árpád fejedelem útja 79. , Wit-Sys Zrt., 1036 Budapest, Árpád fejedelem útja 79.

Keywords:

bitmap indexing, health profile, IMEE algorithm

Abstract

In this article we introduce the IMEE (May I Eat with Index Mask) algorithm, which we developed in the framework of the eFilter project. The goal of this project was to build up an information system, which can filter a food list by health data. The new algorithm has to decide whether the user may or may not eat a given food. To be able to do so we have to know the users health profile on eating. This profile contains constraints. We have to filter the potentially big food database according these constraints. The first algorithm in this article is the straightforward one. To speed up this algorithm we introduce an indexing mechanism, which enables us to use bitmap indexing. Bitmap indexing pays off if we have lots of records and the indexed entity has only a few possible values. The introduced method can turn a constraint into an index by indexing only those foods which contain less or equal ingredients than a value on the logarithmic scale. Unfortunately, this was we can introduce only a less or more strict condition than the original one. We assign to the generic N < ingredient content ≤ M constraint the more strict one 2^ceiling(log2(N)) < ingredient content ≤ 2^floor(log2(M)), we call this the greatest specific mask. The IMEE algorithm works as follows: it closes up all constraints for each food ingredient, and then computes the greatest specific masks for each such constraint, and then filters those foods from the databases which fulfil all greatest contained constraints.

Author Biography

  • Gábor Kusper, Eszterházy Károly Főiskola, Számítástudományi Tanszék, 3300 Eger, Eszterházy tér 1., Eszterházy Károly College, Department of Computer Science, H-3300 Eger, Eszterházy tér 1.

    corresponding author
    gkusper@aries.ektf.hu

References

Chan, C.-Y., Ioannidis, Y. E. (1998): Bitmap index design and evaluation. Proceedings of the SIGMOD ’98 International Conference on Management of Data, 355–366. p. https://doi.org/10.1145/276304.276336

Kusper, G., Radványi, T. (2007): Az EGERFOOD élelmiszerbiztonsági tudásközpont projekt információs rendszerének kialakítása. Networkshop 2007 konferencia, Eger, 8 p.

Kusper, G., Radványi, T. (2008): Az EGERFOOD élelmiszerbiztonsági nyomkövető rendszer – Hogyan modellezzük a cégek munkafolyamatait. Networkshop 2008 konferencia, Dunaújváros, 8 p.

Liptai, K., Kusper, G., Radványi, T. (2007): Cryptographycal protocols in the Egerfood Information System. Annales Mathematicae et Informaticae, 34. 61–70.

Radványi, T. (2004): Examination of the MSSQL server from the user's point view considering data insertion. Acta Academiae Pedagogicae Agriensis, 69–77.

Radványi, T., Kusper, G. (2007): Requirement analysis and a database model for the project EGERFOOD Food Safety Knowledge Center. Invited talk. Proceedings of ICAI-2007, 1. 15–23. p.

Radványi, T., Kusper, G., Kovács, E. (2008a): Adatforgalom és mobilkommunikáció az Egerfood rendszerben. AgriaMédia 2008 konferencia, Kötet I. 100–107. p.

Radványi, T., Kusper, G., Kovács, E. (2008b): Kommunikáció az EGERFOOD élelmiszerbiztonsági projekt információs rendszerében. IF2008 konferencia, CD- kiadvány, ISBN 978-963-473-129-0, 10 p.

Spiegler, I., Maayan, R. (1985): Storage and retrieval considerations of binary data bases. Information Processing and Management: an International Journal, 21(3), 233–254. https://doi.org/10.1016/0306-4573(85)90108-6

Wu, K., Otoo, E. J., Shoshani, A. (2006): Optimizing bitmap indices with efficient compression. ACM Transactions on Database Systems, 31(1), 1–38. https://doi.org/10.1145/1132863.1132864

Published

2011-12-12

How to Cite

Kusper, G., & Márien, S. (2011). Filtering Food Databases by Logaritmic Indeces on Quantity Constraints. Acta Agraria Kaposváriensis, 15(3), 13-30. https://journal.uni-mate.hu/index.php/aak/article/view/7086