Model Based Control of Continuous Crystallizers
Keywords:
crystallization, controlling, modelingAbstract
Crystallization is a widely used cleaning, separation and grain producing technique in the industry. The moment equation model of an isothermal continuous crystallizer forms a dynamical system the state of which is represented by the vector of six variables (: the first four leading moments, solute concentration, solvent concentration) and its time evolution occurs in a region of the six-dimensional phase space. The crystallizer is a nonlinear MIMO system with strong coupling between the state variables. The results of the controlling study have shown that the linear MPC is an adaptable and feasible controller and by seeding, the controllability of the crystallizer increases.
References
Blickle, T., Lakatos, B. G., Mihálykó, Cs. (2001). Szemcsés rendszerek matematikai modelljei. A kémia újabb eredményei – 89., Akadémiai Kiadó, Budapest.
Chiu, T., Christofides, P. D. (1999). Nonlinear Control of Particulate Processes, AIChE Journal, 45(6), 1279–1297. https://doi.org/10.1002/aic.690450613
Hulburt, H. M., Katz, S. L. (1964). Some problems in particle technology: A statistical mechanical formulation, Chem. Engng Sci., 19(8), 555–574. https://doi.org/10.1016/0009-2509(64)85047-8
Jager, J., Kramer, H. J. M., de Jong, E. J., de Wolf, S., Bosgra, O. H. (1992). Control of industrial crystallizers Powder Technology, 69(1), 11–20. https://doi.org/10.1016/0009-2509(64)85047-8
Lakatos, B. G., Sapundzhiev, Ts. J. (1997). Populent-balance model of crystallizers Bulg. Chem. Commun., 29. 28–38.
Lakatos, B. G., Mihálykó, Cs., Blickle, T. (2002). A momentum módszer alkalmazásáról: kvalitatív analízis, A MKN’2002 előadásai. KE MÜKKI, Veszprém, 204–209.
Maciejowski, J. M., (1989). Multivariable Feedback Design. Addison-Wesley, Wokingham.
Moldoványi, N., Abonyi, J., Lakatos, B. G. (2002). Folyamatos kristályosítók modell bázisú irányítása. A MKN’2002 előadásai. KE MÜKKI, Veszprém, 311–316.
Myerson, A. S., Rush, S., Schork, F. J., Johnson, J. L. (1987). In: Nyvlt, J. and S. Zacek. (Eds): Proc. 10th Symp. Ind. Cryst. Academia, Praha, 407.
Ramkrishna, D. (2000). Population Balances. Theory and Applications to Particulate Systems in Engineering. Academic Press, San Diego.
Randolph, A. D., Larson, M. A. (1988). Theory of Particulate Processes. Academic Press, New York. https://doi.org/10.1016/B978-0-12-579652-1.50007-7
Rao, M., Qui, H. (1993). Process Control Engineering. Gordon & Breach, Chemin de la Sallaz, Switzerland.
Rohani, S., (1995). Control of crystallizers. in: CrystallizationTechnology Handbook. Marcel Dekker, New York, 327–357.
Rohani, S., Haeri, M., Wood, H. C. (1999). Modeling and control of a continuous crystallization process Part 1. Linear and non-linear modeling, Computers chem. Engng, 23(3), 263–277. https://doi.org/10.1016/S0098-1354(98)00271-3
Rohani, S., Haeri, M., Wood, H. C. (1999). Modeling and control of a continuous crystallization process Part 2. Model predictive control, Computers chem. Engng., 23(3), 279–286. https://doi.org/10.1016/S0098-1354(98)00272-5
Tavare, N. S. (1995). Industrial Crystallization. Process Simulation, Analysis and Design. Plenum Press, New York. https://doi.org/10.1007/978-1-4899-0233-7
Temam, R. (1988). Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4684-0313-8
Downloads
Published
Issue
Section
License
Copyright (c) 2004 Moldoványi Nóra, Lakatos G. Béla, Szeifert Ferenc

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

