Automatic interpretation of scanned maps
Keywords:
vectorization, GIS, artificial neural network, graphics recognition, pattern recognitionAbstract
To create a spatial database for some GIS applications, it is a big challenge to recognize all the simple and complex map objects automatically on scanned maps. This research field is generally referred as map interpretation. The first part of the present study shows the place of map interpretation concerning related topics of document analysis, and discusses interpretation systems representing main approaches in the field. The second part gives a detailed discussion of our own interpretation system called MAPINT which has special support from Hungarian cadastral maps. Processing starts with an affine coordinate transform followed by raw vectorization, the result of which is converted into a vectorgraph format. All recognition steps are performed on this format. Recognized objects are: dashed lines, house numbers and parcel numbers, connection signs (a special notation of Hungarian maps expressing the relationship between a building and a parcel), null-circles (denoting measured points), building and parcel polygons. The study is closed with a comparison and evaluation of different systems.
References
Boatto, L., Consorti, V., Buono, M., Zenzo, S., Eramo, V., Esposito, A., Melcarne, F., Meucci, M., Morelli, A., Mosciatti, M., Scarci, S., Tucci, M. (1992). An Interpretation System for Land Register Maps. Computer, 25(7), 25–33. https://doi.org/10.1109/2.144437
Chen, Y., Langrana, N. A., Das, A. K. (1996). Perfecting Vectorized Mechanical Drawings. Computer Vision and Image Understanding, 63(2), 273–286. https://doi.org/10.1006/cviu.1996.0019
Di Zenzo, S., Morelli, A. (1989). A useful image representation. Proc. of 5th Internat. Conf. on Image Analysis and Processing. World Scientific Publishing, Singapore, 170–178.
Ebi, N. B. (1995). Image Interpretation of Topographic Maps on a Medium Scale Via Frame-based modelling. International Conference on Image Processing, IEEE Press, California, I. 250–253. https://doi.org/10.1109/ICIP.1995.529693
Graphics Recognition (1996-2002). Selected papers of GREC workshops, Lecture Notes in Computer Science, Springer, 1072 (1996), 1389 (1998), 1941 (2000), 2390 (2002).
Hudra, Gy. (2001). Interpretation of Hungarian Cadastral Maps. Karlsruher Geowissenschaftliche Schriften, Reihe D, Band 8, Fachhochschule Karlsruhe, 31.
Hudra, Gy., Kern, H. (1999). Automatische Erkennung von linienhaften Strukturen auf gescannten Karten. Horizonte, Fachhochschule Mannheim, 15. 68.
Katona, E., Palágyi, K., Tóth, N. (1995). Signature verification using neural nets. Proceedings of 9th Scandinavian Conference on Image Analysis, 1115–1122.
Katona, E., Hudra, Gy. (1999a) An Interpretation System for Cadastral Maps. Proceedings of 10th Internat. Conf. on Image Analysis and Processing, IEEE Computer Society, 792–797. https://doi.org/10.1109/ICIAP.1999.797692
Katona, E., Hudra, Gy. (1999b). Kataszteri adatfeltöltés automatikus térkép felismeréssel. Térinformatika, 8. 12–13.
Katona, E. (2001). Automatikus térkép interpretáció. Ph.D. értekezés, Szegedi Tudományegyetem.
Katona, E. (2002). Vector-based map interpretation. Proceedings of the Conference of the Hungarian Association on Image Processing and Pattern Recognition, Von Neumann Computer Society, 192–200.
Kern, H., Mezősi, G., Garay, G. (1997). Korszerű eszköz segíti a térképek automatikus vektorizálását. Térinformatika, 4. 23.
Klauer, R. (1993). Untersuchungen zur Optimierung von Verfahren der automatisierten Digitialisierung von Flurkarten. Diplomarbeit, Hannover.
Lladós, J., Martí, E., Lopez-Krahe, J. (1999). A Hough-based method for hatched pattern detection in maps and diagrams. Internat. Conf. on Document Analysis and Recognition, IEEE Press, Los Alamitos, California, 479–482. https://doi.org/10.1109/ICDAR.1999.791829
Li, L., Nagy, G., Samal, A., Seth, Sh., Xu, Y. (1999). Cooperative Text and Line-art Extraction from a Topographic Map. Internat. Conf. on Document Analysis and Recognition, IEEE Press, Los Alamitos, California, 467–470. https://doi.org/10.1109/ICDAR.1999.791826
Márkus, B. (1994). (szerk.): NCGIA Core Curriculum, magyar fordítás (az eredeti kiadás szerkesztői Goodchild, M. F. és Kemp, K. K.). EFE FFFK, Székesfehérvár.
Niemann, H., Sagerer, G. F., Schröder, S., Kummert, F. (1990). ERNEST: A Semantic Network System for Pattern Understanding. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9. 883–905. https://doi.org/10.1109/34.57683
Omaszta, S., Szabó, J. (1999). TAKAROS lehetőségek az EU csatlakozás tükrében. Geodézia és Kartográfia, 6.
Phillips, I. T., Chhabra, A. K. (1999) Empirical Performance Evaluation of Graphics Recognition Systems. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 849–870. https://doi.org/10.1109/34.790427
Samet, H., Soffer, A. (1998). MAGELLAN: Map Acquisiton of GEographic Labels by Legend ANalysis. International Journal on Document Analysis and Recognition, 89–101. https://doi.org/10.1007/s100320050009
Suzuki, S., Yamada, T. (1990). MARIS: Map Recognition Input System. Pattern Recognition, 23(8), 919–933. https://doi.org/10.1016/0031-3203(90)90137-A
Tan, C. L., Ng, P. O. (1998). Text Extraction Using Pyramid. Pattern Recognition, 31(1), 63-72. https://doi.org/10.1016/S0031-3203(97)00026-5
Trier, O. D., Jain, A. K., Taxt, T. (1996). Feature Extraction Methods for Character Recognition – A survey. Pattern Recognition, 29(4), 641–662. https://doi.org/10.1016/0031-3203(95)00118-2
Yamada, H., Yamamoto, K., Saito, T., Hosokawa, K. (1994). Recognition of Elevation Value in Topographic Maps by Multi-Angled Parallelism. Int. Journal of Pattern Recogn. and Artif. Intell., 8(5), 1149–1170. https://doi.org/10.1142/S0218001494000577
Downloads
Published
Issue
Section
License
Copyright (c) 2003 Katona Endre

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

