What should the analysis of a data mining software be like?

Authors

  • Károly Szommer Budapesti Corvinus Egyetem, Számítástudományi Tanszék, 1093 Budapest, Fővám tér 8. , Corvinus University of Budapest, Department of Computer Science, H-1093 Budapest, Fővám tér 8.

Keywords:

data mining, analysis method, presentation

Abstract

The data mining tools are widely spreaded and started to become homogeneous in their field of service. The software analyses and presentations don’t follow the changes of the demands on the market. Such aspects are analyzed, that must be amended. Companies want to choose th ebest data mining tool, that’s why there is a need for more accurate and detailed analyses. Not like the current ones that cannot be compared with each other, it can show the details of the development/improvement of the software market. If we look back in time, many analyses can be found, but typically they did not mention the useful details of other methods. I examined the analysis methods and I created new criterias, that should be added to the analyses for the companies. I determined the weights of each category, furthermore I prepared the basics of a graphical presentation method as well. The aforementioned analysis technique and presentation method can also be used for other softwares.

Author Biography

  • Károly Szommer, Budapesti Corvinus Egyetem, Számítástudományi Tanszék, 1093 Budapest, Fővám tér 8., Corvinus University of Budapest, Department of Computer Science, H-1093 Budapest, Fővám tér 8.

    ifj.szommer.karoly@gmail.com

References

Bodon, F. (2010): Adatbányászati algoritmusok. [Online] http://www.cs.bme.hu/~bodon/magyar/adatbanyaszat/tanulmany/adatbanyaszat.pdf

Collier, K., Carey, B., Stautter, D., Marjaniemi, C. (1999): A Methodology for Evaluating and Selecting Data Mining Software. Proceedings of the 32nd Hawaii International Conference on System Sciences, 1–11. p. https://doi.org/10.1109/HICSS.1999.772607

Cser, L., Fajszi, B., Bodnár, P. (2005): Üzleti tudás az adatok mélyén. Budapesti Műszaki Egyetem/IQSYS : Budapest

Cser, L., Fajszi, B., Fehér, T. (2010): Üzleti haszon az adatok mélyén. Adatbányászat. Alinea : Budapest

Elder, J. F., Abbott, D. W. (1998): A comparison of leading data mining tools. Fourth International Conference on Knowledge Discovery & Data Mining, New York

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. (1996): The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM., 39(11), 27–34. https://doi.org/10.1145/240455.240464

Freinberg, D., Beyer, M. A. (2010): Magic Quadratant for Data Warehouse Database Management Systems. Gartner

Giraud-Carrier, C., Povel, O. (2003): Characterising Data Mining software. Intelligent Data Analysis, 7. 181–192. https://doi.org/10.3233/IDA-2003-7302

Goebel, M., Gruenwald, L. (1999): A survey of data mining and knowledge discovery software tools. SIGKDD Explorations, 1(1), 20–33. https://doi.org/10.1145/846170.846172

Hen, L. E., Lee, S. P. (2008): Performance Analysis of Data Mining Tools Cumulating with a Proposed Data Mining Middleware. Journal of Computer Science, 4(10), 826–833. https://doi.org/10.3844/jcssp.2008.826.833

Kobielus, J. (2010): The Forrester Wave: Predictive Analytics And Data Mining Solutions, Q1 2010.

Krauth, P. (2007): Üzleti Intelligencia, Információs Társadalom Technológiai Távlatai, 3. 109–131.

Published

2011-12-12

How to Cite

Szommer, K. (2011). What should the analysis of a data mining software be like?. Acta Agraria Kaposváriensis, 15(3), 115-126. https://journal.uni-mate.hu/index.php/aak/article/view/7095