Role of signal transduction molecules in oocyte maturation and early embryo development

A review

Authors

  • Ágnes Bali Papp University of West Hungary Faculty of Animal Sciences, H-9200 Mosonmagyaróvár, Vár 4.

Keywords:

signal transduction molecules, growth factors, oocyte maturation and embryo development

Abstract

The object of the review article is the role of signal transduction molecules in the metabolism from a special point of view on reproduction. The author has examined the effect of the signal transduction molecules as: IGF ((Insulin-like Growth Factor), EGF (Epidermal Growth Factor), VEGF (Vascular Endothelia Growth Factor), TGF (Transforming Growth Factor) FGF (Fibroblast Growth Factor) NGF (Nerve Growth Factor) and leptin on the oocyte maturation and embryo development

Author Biography

  • Ágnes Bali Papp, University of West Hungary Faculty of Animal Sciences, H-9200 Mosonmagyaróvár, Vár 4.

    bali@mtk.nyme.hu

References

Abeydeera, L. R., Wang, W. H., Cantley, T., Rieke, A., Prather, R., Day, B. (1998): Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol. Reprod. Dev., 51(4), 395–401. https://doi.org/10.1002/(SICI)1098-2795(199812)51:4%3c395::AID-MRD6%3E3.0.CO;2-Y

Austin, C. (1961): The Mammalian egg. Blackwell Science Publications, Oxford. https://doi.org/10.5962/bhl.title.6406

Austin, C., Short, R. (eds)(1982): Reproduction in Mammals, Vol I. Germ Cells and Fertilization. Cambridge University Press, Cambridge.

Basini, G., Bussolati, S., Santini, S. E., Bianchi, F., Careri, M., Mangia, A., Musci, M., Grasselli, F. (2008): Hydroxyestrogens inhibit angiogenesis in swine ovarian follicles. Endocrinol., 199(1), 127–135. https://doi.org/10.1677/JOE-08-0258

Bonnet, A., Le Cao, K. A., SanCristobal, M., Benne F., Robert- Granie, C., Law-So, G., Fabre, S., Besse, P., De Billy, E., Quesnel, H., Hatey, F., Tosser-Klopp, G. (2008): In vivo gene expression in granulosa cells during pig terminal follicular development. Reprod., 136(2), 211–224. https://doi.org/10.1530/REP-07-0312

Caetano, A. R., Johnson, R. K., Ford, J. J., Pomp D. (2004): Microarray profiling for differential gene expression in ovaries and ovarian follicles of pig selected for increased ovulation rate. Genet., 168(3), 1529–1539. https://doi.org/10.1534/genetics.104.029595

Carpenter, G., Cohen, S. (1979): Effects of EGF on proliferation of epithelian cells Ann. Rev. Biochem., 48. 193–216. https://doi.org/10.1146/annurev.bi.48.070179.001205

Chang, M (1955): The maturation of rabbit oocytes in culture and their maturation, activation, fertilization and subsequent development in the fallopian tubes. J. Exp. Zool., 128(2), 378–405. https://doi.org/10.1002/jez.1401280207

Clarke, I. J., Henry, B. A. (1999): Leptin and reproduction. Rev Reprod., 4(1), 48–55. https://doi.org/10.1530/ror.0.0040048

Cohen, S. J. (1962): A new compound from mouse maxillary gland. Biol. Chem., 237(5), 1555–1562. https://doi.org/10.1016/S0021-9258(19)83739-0

Ding, J., Foxcroft, G. R. (1994): FSH-stimulated follicular secretions enhanced oocyte maturation in pigs. Therio., 41(7), 1437–1481. https://doi.org/10.1016/0093-691X(94)90198-R

Dissen, G. A., Hill, D. F., Costa, M. E., Dees, W. I., Lara, H. E., Ojeda, S. R. (1996): A role for trkA nerve growth factor receptors in mammalian ovulation. Endoc., 137(1), 198–209. https://doi.org/10.1210/endo.137.1.8536613

Drummond, A. E. (2006) Role of steroids in follicular growth. Reprod Biol. Endoc., 4. 16. https://doi.org/10.1186/1477-7827-4-16

Drummond, A. E., Tellbach, M., Dyson, M., Findlay, J. K. (2007): Fibroblast growth factor-9, a local regulator of ovarian function. Endoc., 148(8) 3711–3721. https://doi.org/10.1210/en.2006-1668

Ehrhard, P. B., Erb, P., Graumann, U., Otten V. (1993): Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase trk in activated CD4- positive T-cell clones. Proc. Natl. Acad. Sci., 90(23), 10984–10988. https://doi.org/10.1073/pnas.90.23.10984

Flood, M. R., Gage, T. L., Bunch T. D. (1993): Effect of various growth promoting factors on preimplantation bovine embryo development in vitro. Therio., 39(4), 823–833. https://doi.org/10.1016/0093-691X(93)90421-Z

Foxcroft, G. R., Hunter, M. G. (1985): Basic physiology of follicular maturation in the pig. J. Reprod Fertil., 33. 1–19.

Fowden, A. L. (2003): The insulin-like growth factors and feto-placental growth. Placenta, 24(8–9), 803–812. https://doi.org/10.1016/S0143-4004(03)00080-8

Fricle, P. M., Ford, J. J., Reynolds, L. P., Redmer D. A. (1996): Growth and cellular proliferation of antral follicles throughout the follicular phase of the oestrus cycles in meishan gilts. Biol. Reprod., 54(4), 879–887. https://doi.org/10.1095/biolreprod54.4.879

Gilchrist, R.B., Ritter, L. J., Armstrong, D. T. (2004): Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci., 82–83. 431–446. https://doi.org/10.1016/j.anireprosci.2004.05.017

Hansen, P. J. (2007): To be or not to be-determinants of embryonic survival following heat shock. Therio., 68(Suppl. 1), 40–48. https://doi.org/10.1016/j.theriogenology.2007.03.013

Harvey, J., Ashford, M. L. J. (2003): Leptin in the CNS: much more than a satiety signal. Neuropharm., 44(7), 845–854. https://doi.org/10.1016/S0028-3908(03)00076-5

Hattori, M. A., Yoshino, l., Shinohara, Y., Horiuchi, R., Kojina I. (1995): A novel action of epidermal growth factor in rat granulosa cells its potentiation of gonadotropin action. J. Mol. Endoc., 15(3), 283–291. https://doi.org/10.1677/jme.0.0150283

Hillier, S. G., Miro F. (1993): Inhibin, activin and follistatin. Potential roles in ovarian hysiology. Annals of the New York Academy of Sciences, 687(1), 29–38. https://doi.org/10.1111/j.1749-6632.1993.tb43850.x

Horigome, K., Pryor, J. C., Bullock, E. D., Johnson, Jr. E. M. (1993): Mediator release from mass cells by nerve growth factor. J. Biol. Chem., 268(20), 14881–14887. https://doi.org/10.1016/S0021-9258(18)82415-2

Hunter, M. G., Robinson, R. S., Mann, G. E., Webb, R. (2004): Endocrine and paracrine control of follicular development and ovulation rate in farm species. Anim Reprod Sci., 82–83. 461–477. https://doi.org/10.1016/j.anireprosci.2004.05.013

Kaye, P. L., Bell, K. L. Beebe, L. F., Dunglison, L. F. S., Gardner, H. G., Harvey, M. B. (1992): Insulin-like growth factors (IGFs) in preinplantation development. Reprod. Fertil., Dev., 4(4), 373–386. https://doi.org/10.1071/RD9920373

Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V., Parada, L. F. (1991): The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Sci., 252(5005), 554–558. https://doi.org/10.1126/science.1850549

Kelly, J. M., Kleemann, D. O., Maxwell W. M., Walker S. K. (2008): Effects of insulin-like growth factor-I, epidermal growth factor and cysteamine on the in vitro maturation and development of oocytes collected from 6- to 8-week-old Merino lambs. Reprod Fertil Dev., 20(5), 570–578. https://doi.org/10.1071/RD07220

Kiess, W., Reich, A., Meyer, K., Glasow, A., Deutscher, J., Klammt, J., Yang, Y., Muller, G., Kratzsch, J. (1999): A role for leptin in sexual maturation and puberty? 1: Horm. Res., 51(3), 55–63. https://doi.org/10.1159/000053163

Knight, P. G., Glister, C. (2006): TGF-beta superfamily members and ovarian follicle development. Reprod., 132(2), 177–188. https://doi.org/10.1530/rep.1.01074

Knobil, E., Neill, J. D. (eds.) (1988): The Physiology of Reproduction Raven Press, Ltd., New York.

Knobil, E., Neill, J. D. (eds.) (1999): Encyclopaedia of Reproduction. 3. Academic Press, San Diego.

Kim, J. J., Fazleabas, T. (1999): Growth factors. In: Knobil, E., Neill, J.D. (eds.) Encyclopaedia of Reproduction. 2. Academic Press, San Diego, 573–583.

Kogo, H., Yoshie, M., Kutsukake, M., Tamura, K. (2008): [Role of implantation-related factors, stathmin and insulin-like growth factor-binding protein 7 in reproductive endocrinology] Yakugaku Zasshi., 128(4), 565–574. https://doi.org/10.1248/yakushi.128.565

Kun, Z., Shaohua, W., Yufang, M., Yankun, L., Hengxi, W., Xiuzhu, S., Yonghui, Z., Yan, L., Yunping, D., Lei, Z., Ning L. (2007): Effects of leptin supplementation in in vitro maturation medium on meiotic maturation of oocytes and preimplantation development of parthenogenetic and cloned embryos in pigs. Anim. Reprod. Sci., 101(1–2), 85–96. https://doi.org/10.1016/j.anireprosci.2006.08.021

Lee, E., Jeong, Y. I., Park, S. M., Lee, J. Y., Kim, J. H., Park, S. W., Hossein, M. S., Jeong, Y. W., Kim, S., Hyun, S. H., Hwang, W. S. (2007): Beneficial effects of brain-derived neurotropic factor on in vitro maturation of porcine oocytes. Reprod., 134(3), 405–414. https://doi.org/10.1530/REP-06-0288

Levi-Montalcini R. (1987) Identification of nerve growth factor. Sci. 237. 1154. https://doi.org/10.1126/science.3306916

Linher, K., Wu, D., Li J. (2007): Glial cell line-derived neurotrophic factor: an intraovarian factor that enhances oocyte developmental competence in vitro. Endoc., 148(9), 4292–4301. https://doi.org/10.1210/en.2007-0021

Martin-Zanca, D., Barbacid, M., Parada, L.F. (1990): Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev., 4. 683–694. https://doi.org/10.1101/gad.4.5.683

Mayerhofer, A., Dissen, G. A., Parrot, J. A., Hill, D. F., Mayerhofer, D., Garfield, R. E., Costa, M. E., Skinner, M. K., Ojeda, S. R. (1996): Involvement of nerve growth factor in the quality cascade: trkA receptor activation inhibits gap junctional communication between theca cells Endoc., 137(12), 5662–5669. https://doi.org/10.1210/endo.137.12.8940397

Mazelbourg, S., Bondy, C. A., Zhou, J., Monget P. (2003): The insulin like growth factor system: a key determinant role in the growth and selection of ovarian follicles? A comparative species study. Reprod. Dom. Anim., 38(4), 247–258. https://doi.org/10.1046/j.1439-0531.2003.00440.x

Missale, C., Boroni, F., Sigala, S., Zanellato, A., Dal Toso, M., Balsari, A., Spano, P. (1994): Nerve growth factor directs differentiation of the bipontential cell line H6-3 in to the mammotroph phenotype. Endoc., 135(1), 290–298. https://doi.org/10.1210/endo.135.1.8013363

Monget, P., Monniaux, D., Pisselet, C., Durrand, P. (1993): Changes in insulin like growth factor I (IGF-I.) IGF-II., and their binding proteins during growth and atresia of ovarian follicles. Endoc., 132(4), 1438–1446. https://doi.org/10.1210/endo.132.4.7681760

Monteleone, P., Artini, P. G., Simi, G., Cela, V., Casarosa, E., Begliuomini, S., Ninni, F., Pluchino, N., Luisi, M., Genazzani, A. R. (2007): Brain derived neurotrophic factor circulating levels in patients undergoing IVF. Assist. Reprod. Genet., 24. 477–480. https://doi.org/10.1007/s10815-007-9169-y

Monteleone, P., Giovanni Artini, P., Simi, G., Casarosa, E., Cela, V., Genazzani, A. R. (2008): Follicular fluid VEGF levels directly correlate with perifollicular blood flow in norm responder patients undergoing IVF. Assist Reprod Genet., 25. 183–186. https://doi.org/10.1007/s10815-008-9218-1

Onagbesan, O., Bruggeman, V., Decuypere, E. (2009): Intra-ovarian growth factors regulating ovarian function in avian species: a review. Anim. Reprod. Sci., 111(2–4), 121–140. https://doi.org/10.1016/j.anireprosci.2008.09.017

O’Neill, C. (1997): Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol. Reprod., 56(1), 229–237. https://doi.org/10.1095/biolreprod56.1.229

Palma, G. A., Muller, M., Brem, G. (1997): Effect of insulin-like growth factor I (IGF-I) at high concentration on blastocyst development of bovine embryos produced in vitro. J. Reprod. Fertil., 110(2), 347–353. https://doi.org/10.1530/jrf.0.1100347

Paria, B. C., Dey, S. K. (1990): Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci., 87(12), 4756–4760. https://doi.org/10.1073/pnas.87.12.4756

Paula-Lopes, F. F., Boelhauve, M., Habermann, F. A., Sinowatz, F., Wolf E. (2007): Leptin promotes meiotic progression and developmental capacity of bovine oocytes via cumulus cell-independent and -dependent mechanisms. Biol Reprod., 76(3), 532–541. https://doi.org/10.1095/biolreprod.106.054551

Pincus, G., Enzmann, E. (1935): The comparative behaviour of mammalian eggs in vivo and in vitro I. The activation of ovarian eggs. J. Exp. Med., 62(5), 665–675. https://doi.org/10.1084/jem.62.5.665

Racowsky, C., McGaughey, R. (1982): Further studies of the effect of follicular fluid and memebrane graanulosa cells on the spontaneous maturation of pig oocytes. J. Reprod. Fertil., 66(2), 505–512. https://doi.org/10.1530/jrf.0.0660505

Rehfeldt, C., Nissen, P. M., Kuhn, G., Vestergaard, M., Ender, K., Oksbjerg, N. (2004): Effects of maternal nutrition and porcine growth hormone (pGH) treatment during gestation on endocrine and metabolic factors in sows, fetuses and pigs, skeletal muscle development, and postnatal growth. Dom. Anim. Endoc., 27(3), 267–285. https://doi.org/10.1016/j.domaniend.2004.06.005

Sharmann, R., Tazi, A., Polak, M., Kanaka, C., Czernichow, P. (1993): Expression of functional nerve growth factor receptors in pancreatic beta cell lines and foetal rat islets in primary culture. Diab., 42. 1829–1836.

Shimasaki, S., Moore, R. K., Otsuha, F., Erickson, G. F. (2004): The bone morphogenetic protein system in mammalian reproduction. Endoc. Rev., 25(1), 72–101. https://doi.org/10.1210/er.2003-0007

Thibault, C. (1972): Final stages of mammalian oocyte maturation. In: Biggers, J., Schuetz, A. (eds) Oogenesis. University Park Press, Baltimore.

Williams, G. L., Amstalden, M., Garcia, M. R., Stanko, R. L., Nizielski, S. E., Morrison, C. D., Keisler, D. H. (2002): Leptin and its role in the central regulation of reproduction in cattle. Dom. Anim Endoc., 23(1–2), 339–349. https://doi.org/10.1016/S0739-7240(02)00169-8

Wood, S. A., Kaye, P. L. (1989): Effects of epidermal growth factor on preimplantation mouse embryos. J. Reprod. Fertil., 85(2), 575–582. https://doi.org/10.1530/jrf.0.0850575

Xia, P., Tekpetey, F. R., Armstrong, D. T. (1994): Effect of IGF-I. on pig oocyte maturation, fertilization, and early development in vitro, and on granulosa and cumulus cells biosynthetic activity. Mol. Reprod. Dev., 38(4), 373–379. https://doi.org/10.1002/mrd.1080380404

Ying, S. Y., Zhang, Z. (1999): Ovarian hormones, overview. In: Knobil, E., Neill, J. D. (eds.) Encyclopaedia of Reproduction 3. Academic Press, San Diego, 578–582.

Published

2009-02-15

How to Cite

Bali Papp, Ágnes. (2009). Role of signal transduction molecules in oocyte maturation and early embryo development: A review. Acta Agraria Kaposváriensis, 13(1), 15-26. https://journal.uni-mate.hu/index.php/aak/article/view/1936

Most read articles by the same author(s)