Simulation study of a heterocatalytic reactor

Authors

  • Tamás Varga University of Pannonia, Faculty of Engineering, Department of Process Engineering, H-8200 Veszprém, Egyetem út 10.
  • János Abonyi University of Pannonia, Faculty of Engineering, Department of Process Engineering, H-8200 Veszprém, Egyetem út 10.
  • Ferenc Szeifert University of Pannonia, Faculty of Engineering, Department of Process Engineering, H-8200 Veszprém, Egyetem út 10.

Keywords:

reactor runaway, forecast, stability analysis, decision tree, operator support system

Abstract

The reactor runaway phenomenon is a serious problem in the chemical industry. In this work we focus on one of these runaway problems. Reactor runaway means a sudden and considerable change in the process variables. Runaway has two main important aspects. In one hand runaway forecast has a safety aspect, since it is important for avoiding the damage of reactor’s constructional material or reactor explosion; on the other hand it has a technology aspect, since the forecast of the runaway can be used for avoiding the development of hot spots in catalytic bed. Most of different runaway criteria found in literature are basically based on two approaches, there are data- and model-based criteria. The problem with the data-based methods is found in measurement conditions. The model-based criteria require parameterstability analysis, that means to apply a model-based criteria is necessary to have an exact model and correct model parameters. This thesis applies the Ljapunov’s indirect method to study the stability of an industrial reactor, and presents the how the steady-state simulator of the reactor can be used for the forecasting of the runaway in a catalytic tube-reactor. Based on the results extracted from this analysis a decision tree was inducted in order to be applied as part of an operator support system. This device is suitable for forecasting the reactor runaway based on the measured feed parameters.

Author Biography

  • Tamás Varga, University of Pannonia, Faculty of Engineering, Department of Process Engineering, H-8200 Veszprém, Egyetem út 10.

    corresponding author
    vargat@fmt.uni-pannon.hu

References

Abonyi, J. (2005). Adatbányászat – a hatékonysága eszköze. ComputerBooks kiadó, 12–34.

Adler, J., Enig, J. W. (1964). The Critical Conditions in Thermal Explosion Theory with Reactant. Consumption. Comb. Flame, 8(2), 97–1103. https://doi.org/10.1016/0010-2180(64)90035-5

Barkelew, C. (1959). Stability of Chemical Reactors. Chem. Eng. Prog. Symp. Ser., 25. 37–46.

Berty, J. M., Brickes, J. H., Hambrick, J. O. (1968). Parametric Sensitivity and Stability of Staged Adiabatic Reactors with Luterstage Coolers. Symposion on Stability and Control of Reaction Systems: Part III, Preprint 10E, St. Louis, Missouri, Feb. 1968.

Bilous, O., Amundson, N. R. (1956). Chemical Reactor Stability and Sensitivity II. Effect of Parameters on Sensitivity of Empty Tubular Reactors. AIChEJ., 2(1), 117–126. https://doi.org/10.1002/aic.690020124

Boddington, T., Gray, P., Kordilewski, W., Scott, S. K. (1983). Thermal Explosions with Exten- sive Reactant Consumption: A New Criterion for Criticality. Proc. R. Soc., A 390. 13–30. https://doi.org/10.1098/rspa.1983.0120

Dente, M., Collona, A. (1964). Il Comportamento dei Reattori Chimici a Flusso Longitudinale nei Rigvardi della Sensitivitá. Chim. E Industria, 46. 752–761.

Eissen, M., Zogg, A., Hungerbühler, K. (2003). The runaway scenario in the assessment of thermal safety: simple experimental access by means of the catalytic decomposition of H2O2. Journal of Loss Prevention in the Process Industries, 16(4), 289–296. https://doi.org/10.1016/S0950-4230(03)00022-6

Han, J., Kimber, M. (2000). Data Mining: concepts and techniques. Chapter 7, Morgan Kaufman, 279–334.

Lacey, A. A. (1983). Critical Behaviour for Homogeneous Reacting Systems with Large Activation Energy. Int. J. Eng. Sci., 21(5), 501–515. https://doi.org/10.1016/0020-7225(83)90098-8

Madár, J. (2005). Kutatási jelentés.

Potter, C., Baron, S. (1951). Kinetics of the catalytic formation of phosgene. Chem. Eng. Prog., 47(9), 473–480.

Schmitz, R. A. (1975). Multiplicity, Stability and Sensitivity of States in Chemical Reacting Systems. A Review. Adv. Chem. Ser., 148–156.

Semenov, N. N. (1928). Zur Theorie des Verbreennungsprozesses, Z. Phys., 48. 571–581. https://doi.org/10.1007/BF01340021

Szeifert, F., Chován, T., Nagy, L., Abonyi, J., Árva, P., Berty, J. M. (2006). Runaway of chemical reactors: parametric sensitivity and stability, publikációra előkészítve.

Szeifert, F., Chován, T., Nagy, L., Almásy, G. (2000). Rendszermodellek-Rendszer-analízis (Process Modeling), Veszprémi Egyetemi Kiadó, 4.18–4.21.

van Welsenaere, R. J., Froment, G. F. (1970). Parametric Sensitivity and Runaway in Fixed Bed Catalytic Reactors. Chemical Engineering Science, 25(10), 1503–1516. https://doi.org/10.1016/0009-2509(70)85073-4

Published

2006-10-15

How to Cite

Varga, T., Abonyi, J., & Szeifert, F. (2006). Simulation study of a heterocatalytic reactor. Acta Agraria Kaposváriensis, 10(3), 121-133. https://journal.uni-mate.hu/index.php/aak/article/view/1832

Most read articles by the same author(s)

1 2 > >>