The effect of partitioning for the performance of fuzzy associative classifiers

Authors

  • Ferenc Péter Pach Pannon University, Department of Process Engineering, H-8200 Veszprém, Egyetem u. 10.
  • Attila Gyenesei Department of Knowledge and Data Analysis, Unilever Research Vlaardingen, The Netherlands
  • Sándor Németh Pannon University, Department of Process Engineering, H-8200 Veszprém, Egyetem u. 10.
  • Péter Árva Pannon University, Department of Process Engineering, H-8200 Veszprém, Egyetem u. 10.
  • János Abonyi Pannon University, Department of Process Engineering, H-8200 Veszprém, Egyetem u. 10.

Keywords:

fuzzy logic, association rule, classification, partitioning, clustering

Abstract

Classification is one of the most popular and extensively applied techniques in data mining. The efficiency of a classification model is evaluated by two parameters, namely the accuracy and interpretability of the model. This paper proposes a fuzzy association rule-based classifier methodology that meets both criteria. Using the fuzzy concept, the obtained model is easily understandable and interpretable for the users. Since the accuracy of a classification model can be largely affected by the partitioning of numerical attributes, this paper discusses several fuzzy and crisp partitioning techniques. The effect of partitioning methods is examined on different case studies. The results of analysis show that classifier methods with fuzzy clustering based partitioning serve higher classification performance.

Author Biography

  • János Abonyi, Pannon University, Department of Process Engineering, H-8200 Veszprém, Egyetem u. 10.

    corresponding author
    abonyij@fmt.uni-pannon.hu

References

Abonyi, J. (2006). Adatbányászat a hatékonyság eszköze, Gyakorlati útmutató kezdőknek és haladóknak, Computerbooks

Agrawal, R., Srikant R. (1994). Fast algorithm for mining association rules in large databases. In: Proceedings of The 20th International Conference on Very Large Data Bases, Santiago, Chile, 487–499.

Agrawal, R., Imielinski T., Swami, A. (1993). Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6), 914–925. https://doi.org/10.1109/69.250074

Catlett, J. (1991). Megainduction: machine learning on very large databases, PhD thesis, University of Sydney

Dong, G., Zhang, X., Wong, L., Li, J. (1999). CAEP: classification by aggregating emerging patterns. In: Proceedings of The Second International Conference on Discovery Science (DS '99), Tokyo, Japan, 30–42. https://doi.org/10.1007/3-540-46846-3_4

Dougherty, J., Kohavi R., Sahami, M. (1995). Supervised and Unsupervised Discretization of Continuous Features, In: Proceedings of The Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, 194–202. https://doi.org/10.1016/B978-1-55860-377-6.50032-3

Gath, I., Geva A. B. (1989). Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 773–780. https://doi.org/10.1109/34.192473

Gustafson, D. E., Kessel, W. C. (1979). Fuzzy clustering with fuzzy covariance matrix, In: Proceedings of The IEEE Conference on Decision and Control, San Diego, CA, 761–766. https://doi.org/10.1109/CDC.1978.268028

Liu, B., Hsu, W., Ma, Y. (1998). Integrating classification and association rule mining. In:: Proceedings of The Fourth International Conference on Knowledge Discovery and Data Mining (KDD ‘98), New York City, USA, 80–86.

Liu, B., Ma, Y., Wong C. K. (2000). Improving an Association Rule Based Classifier, In: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, (PKDD 2000), Lyon, France, 504–509. https://doi.org/10.1007/3-540-45372-5_58

Meretakis, D., Wuthrich, B. (1999). Extending Naive Bayes Classifiers Using Long Itemsets, In: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining (KDD ’99), San Diego, USA, 165–174. https://doi.org/10.1145/312129.312222

Pach, F. P., Gyenesei, A., Németh, S., Árva, P., Abonyi, J. (2006). Fuzzy Association Rule Mining for the Analysis of Historical Process Data, Acta Agraria Kaposváriensis, szerkesztés alatt

Pach, F. P., Gyenesei, A., Németh, S., Árva, P., Abonyi, J. (2006). Fuzzy Association Rule Mining for Model Structure Identification, Applications of Soft Computing: Recent Trends, Part VI Identification and Forecasting, Springer, 261–271. https://doi.org/10.1007/978-3-540-36266-1_25

Quinlan, J. R. (1986). Induction on decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1023/A:1022643204877

Wang, K., Zhou, S., He, Y. (2000). Growing decision tree on support-less association rules. In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’00), Boston, MA, USA, 265–269. https://doi.org/10.1145/347090.347147

Yin, X., Han, J. (2003). CPAR: Classification based on predictive association rules, in Proceedings of the Third SIAM International Conference on Data Mining (SDM’03), San Francisco, CA, USA. https://doi.org/10.1137/1.9781611972733.40

Zimmermann, A., Raedt L. D. (2004). CorClass: Correlated Association Rule Mining for Classification, Discovery Science, 7th International Conference, Padova, Italy, 60–72. https://doi.org/10.1007/978-3-540-30214-8_5

Published

2006-10-15

How to Cite

Pach, F. P., Gyenesei, A., Németh, S., Árva, P., & Abonyi, J. (2006). The effect of partitioning for the performance of fuzzy associative classifiers. Acta Agraria Kaposváriensis, 10(3), 109-120. https://journal.uni-mate.hu/index.php/aak/article/view/1830

Most read articles by the same author(s)

1 2 > >>