Estimation of fat depth of rump (P8) by real-time ultrasound machine in Charolais, Holstein Friesian and Hungarian Simmental young bulls

Authors

  • János Tőzsér Szent István University, Faculty of Agricultural and Environmental Sciences, H-2103 Gödöllő, Páter Károly u. 1.
  • Zoltán Domokos Association of Hungarian Charolais Cattle Breeders, H-3525 Miskolc, Vologda út 1.
  • Gabriella Holló University of Kaposvár, Faculty of Animal Science, H-7400 Kaposvár, Guba Sándor u.40.
  • István Holló University of Kaposvár, Faculty of Animal Science, H-7400 Kaposvár, Guba Sándor u.40.
  • Márton Bujdosó Charolais Ltd., H-6050 Lajosmizse, Dózsa György út 3.
  • Z Andrássy University of Kaposvár, Faculty of Animal Science, H-7400 Kaposvár, Guba Sándor u.40.
  • Matt L. Wolcott The University of New England, Armidale, 2351NSW, Australia

Keywords:

real-time ultrasound, measurement of P8 (depth of rump subcutaneous fat), Charolais, Holstein Friesian and Hungarian Simmental bulls

Abstract

Authors’ aim was to test Falco100 (Pie Medical, 3.5 MHz head) ultrasound equipment for measuring the P8 (fat depth of rump) in Charolais, Holstein-Friesian and Hungarian Simmental young bulls. First research was carried out in 2004 in a Hungarian farm, with two groups of Charolais sire candidates (1st group: horned, n = 13 and 2nd group: polled, n = 23) at the end of performance test. The second research was carried out at the Experimental Farm of the University of Kaposvár, in year 2004, with two groups of fattening bulls (1st group: Holstein Friesian, n = 13 and 2nd group: Hungarian Simmental, n = 11). Bulls were kept on deep litter, in small groups, and fed on corn silage, hay and concentrate in both cases. Subcutaneous rump fat thickness (P8) was measured by Falco 100 with real time ultrasound equipment. Results of one-sample t-test showed that there was no significant difference between polled and horned groups of Charolais bulls in P8 (0.46 cm, and 0.47 cm). We observed similar values of P8 by the 2nd experiment in both breeds (Holstein Friesian: 0.46, Hungarian Simmental: 0.47 cm). Medium, and close correlation (r = 0.42–0.75, P < 0.05) were calculated between P8 and live weight in the two experiments. Based on their results, authors propose the involvement of P8 ultrasonic measurements into the selection system of beef sire candidates. Measurement of P8 gives additional information about fattening intensity of cattle.

Author Biography

  • János Tőzsér, Szent István University, Faculty of Agricultural and Environmental Sciences, H-2103 Gödöllő, Páter Károly u. 1.

    corresponding author
    Tozser.Janos@mkk.szie.hu

References

Agabriel, J., Giraud, J. M., Petit, M. (1986). Détermination et utilisation de la note d' état d' engraissement en élevage allaitant. Bul. Tech. C.R.Z.V. Theix, INRA, 66. 43–50.

Brito, T. D., Pringle, T. D., Williams, R. E., Bertrand, K. J. (2000). Segregating feedlot steers into compositional outcome groups using serial ultrasound measurements. J. Anim. Sci., 78. (suppl) 3.

Claus, A. (1957). Die Messung natürlicher Grenzflachen in Schweinerkörper mit Ultraschall. Fleischwitsch, 9. 552–554.

Devitt, C. J. B., Wilson J. W. (2000). Genetic correlations between yearling bull ultra- sound measurements and finished steer carcass measurements. Ann. Meeting of ADSA-ASAS, July 24–28, Baltimore, Maryland, J. Anim. Sci., 78(Suppl.), 57–58.

Dobrowolski, A., Höreth, R., Branscheid, W. (1993). Apparative Klassifizierung von Schweinehalften. Kulmbacher Reiche, 12. 1–26.

Field, C. M., Williams, A. R., Mckinley, W. B., Jefcoat, L. R., Smith, R. G. (2000). Use of live animal carcass ultrasound in stocker grazing in Mississippi. J. Anim. Sci., 78. (suppl) 11.

Goonewardene, L. A., Price M. A., Liu, M. F., Berg, R. T., Erichsen, C. M. (1999). A sudy of growth and carcass traits in dehorned an polled composite bulls. Can. J. Anim. Sci., 79(3), 383–385. https://doi.org/10.4141/A98-121

Herring, W. O., Miller, D. C., Bertrand, J. K., Benyshek, L. L. (1994). Evaluation of machine, techician, and interpreter effects on ultrasonic measures of backfat and longissimus muscle area in beef cattle. J. Anim. Sci., 72(9), 2216–2226. https://doi.org/10.2527/1994.7292216x

Klawuhn, D., Staufenbiel, R. (1997). Aussagekraft der Ruckenfettdicke zum Körperfettgehalt beim. Rind. Tierarztliche-Praxis, 2. 133–138.

Reverter, A., Johston, D. J., Ferguson, D. M., Perry, D., Goddard, M. E., Burrow, H. M., Oddy, V. H., Thompson, J. M., Bidon, B. M. (2003). Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 4. Correlations among animal, carcass, and meat quality traits. Australian J. of Agricultural Research, 54(2), 149–158. https://doi.org/10.1071/AR02088

Richard, M. W., Spitzer, J. C., Warner, M. B. (1986). Effect of varying level of postpartum nutrition and body condition at calving on subsequent reproductive performance in beef cattle. J. Anim. Sci., 62(2), 300–306. https://doi.org/10.2527/jas1986.622300x

Robinson, D. L., Mcdonald, C. A., Hammond, K., Turner, J. W. (1992). Live animal measurement of carcass traits by ultrasound: assessment and accuracy of sonographers. J. Anim. Sci., 70(6), 1667–1676. https://doi.org/10.2527/1992.7061667x

Song, Y. H., Kim, S. J., Lee, S. K. (2002). Evaluation of ultrasound for prediction of carcass meat yield and meat quality in Korean-native cattle (Honwoo). Asian-Australasian J. of Anim. Sci., 15(4), 591–595. https://doi.org/10.5713/ajas.2002.591

Stooky, J. M., Goonewardene, L. A. (1996). Comparison of production trais and welfare implications between horned and polled beef bulls. Can. J. Anim. Sci. 76(1), 1–5. https://doi.org/10.4141/cjas96-001

Sundstrom, B. (2004). Carcasse EBV (Version 4.2). National Beef Recorcing Scheme BREEDPLAN, 04/2. 1–5.

Temple, R. S., Stnaker, H. H., Howry, D., Posakony, G., Hazaleus, H. H. (1956). Ultrasonic and conductivity methodes for estimating fat thikness in live cattle. Am. Soc. Anim. Prod. West Section. Proc., 7. 477.

Tőzsér J., Agabriel, J., Domokos Z. (1995). Húshasznosítású tehenek kondícióponto- zásának módszere Franciaországban. A Hús, 4. 223–225.

Tőzsér J., Domokos Z., Alföldi L. (2001). A francia és az amerikai húsmarha kondícióbírálati rendszer összehasonlítása. Acta Agronomica, 4. 39–47.

Tőzsér J., Holló G., Holló I., Seregi J., Repa I. (2004/a). A szarvasmarha hosszú hátizom területének mérése real-time ultrahangkészülékkel. Állattenyésztés és Takarmányozás, 6. 539–553.

Tőzsér J., Domokos Z., Bujdosó M., Szentléleki A., Bakus G., Zándoki R., Minorics R. (2004/b). Hosszú hátizom területének mérése real-time ultrahangkészülékkel a charolais fajtában. Acta Agraria Kaposváriensis, 8(2), 11–21.

Walter, B. H. (2002). Cattleman’s Ultrasound Glossary. Charolais Journal, January, 18–19.

Wilson, D. E., Rouse, G. H., Haya, C. L., Hassen, A. (2000). Carcass expected progeny differences using real-time ultrasound measures from developing Angus heifers. Ann. Meeting of ADSA-ASAS, July 24-28, Baltimore, Maryland, J. Anim. Sci., 78. (suppl) 58.

Wolcott, M. L. (2003). The prediction of percent retail beef yield from live animal ultrasound measurements. Thesis of Master of Rural Sciences, The University of New England, Armidale, Australia, 126.

Published

2005-07-15

How to Cite

Tőzsér, J., Domokos, Z., Holló, G., Holló, I., Bujdosó, M., Andrássy, Z., & Wolcott, M. L. (2005). Estimation of fat depth of rump (P8) by real-time ultrasound machine in Charolais, Holstein Friesian and Hungarian Simmental young bulls. Acta Agraria Kaposváriensis, 9(2), 1-11. https://journal.uni-mate.hu/index.php/aak/article/view/1734

Most read articles by the same author(s)

<< < 1 2 3