New Approaches to the Identification of Semi-mechanistic Process Models

Authors

  • János Madár University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158, Hungary , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158.
  • János Abonyi University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158, Hungary , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158. https://orcid.org/0000-0001-8593-1493 (unauthenticated)
  • Ferenc Szeifert University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158, Hungary , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158.

Keywords:

Hybrid models, Artificial Neural Networks, Baker’s yeast fermentation

Abstract

In process engineering, first-principles models derived from dynamic mass, energy and momentum balances are mostly used. When the process is not perfectly known, the unknown parts of the first principles model should be represented by black-box models, e.g. by neural networks. This paper is devoted to the identification and application of such hybrid models. For the identification of the neural network elements of a hybrid model two methods are investigated in this article: back-propagation algorithm and direct optimization. We study three optimization algorithms: Sequential Quadratic Programming, Evolutionary Strategy and Particle Swarm Optimization. The different algorithms are compared in a case study, the baker’s yeast production process.

Author Biography

  • János Abonyi, University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158, Hungary, Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158.

    corresponding author
    abonyij@fmt.vein.hu

References

Abonyi, J., Babuska, R., Verbruggen, H. B., Szeifert, F. (1999). Constraint parameter Estimation in fuzzy modeling. FUZZ-IEEE'99 Conference, Seoul, Korea, 951–956. https://doi.org/10.1109/FUZZY.1999.793080

Can, H. van, Braake, H. te, Hellinga, C., Luyben, K., Heijnen, J. (1996). Strategy for dynamic process modeling based on neural networks and macroscopic balances. AIChE Journal, 42(12), 3403–3418. https://doi.org/10.1002/aic.690421211

Eberhart, R. C., Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization., Proceedings of 7th annual conference on evolutionary computation, 611–616. https://doi.org/10.1007/BFb0040812

Hangos, K. M., Cameron, I. T. (2001). Process Modeling and Model Analysis. Academic Press.

Johansen, T. (1994). Operating regime based process modeling and identification. Ph.D thesis, Department of Engineering Cybernetics, Norwegian Institute of Technology, University of Trondheim, Norway.

Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of IEEE International Conference on neural networks, Perth, Australia, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

Oliveria, R. (2004). Combining first principle modelling and artificial neural networks: a general framework., Comp. and Chem. Eng., 28(5), 755–766. https://doi.org/10.1016/j.compchemeng.2004.02.014

Psichogios, D. C., Ungar, L. H. (1992). A hybrid neural network - first principles approach to process modeling. AIChE Journal, 38(10), 1499–1511. https://doi.org/10.1002/aic.690381003

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution. Stuttgart: Frommann-Holzboog.

Schwefel, H.P, (1995). Numerical Optimization of Computer Models. publisher: Wiley, Chichester.

Simutis, R., Lubbert, A. (1997) Exploratory analysis of bioprocesses using artificial neural network-based methods. Biotechnology Progress, 13(4), 479–487. https://doi.org/10.1021/bp9700364

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P. Y., Hjalmarsson, H., Juditsky, A. (1995) Nonlinear black-box modeling in system identification: an unified overview. Automatica, 31(12), 1691–1724. https://doi.org/10.1016/0005-1098(95)00120-8

Spears, W. M., De Jong, K. A., Back, T., Fogel, D. B., Garis, H. (1993) An Overview of Evolutionary Computation. European Conference on Machine Learning. https://doi.org/10.1007/3-540-56602-3_163

Thompson, M. L., Kramer, M. A. (1994). Modeling chemical processes using prior knowledge and neural networks. AIChE Journal, 40(8), 1328–1340. https://doi.org/10.1002/aic.690400806

Tulleken, H. J. A. F. (1993). Gray-box modelling and identification using physical knowledge and {bayesian} techniques. Automatica, 29(2), 285–308. https://doi.org/10.1016/0005-1098(93)90124-C

Downloads

Published

2004-10-15

How to Cite

Madár, J., Abonyi, J., & Szeifert, F. (2004). New Approaches to the Identification of Semi-mechanistic Process Models. Acta Agraria Kaposváriensis, 8(3), 205-218. https://journal.uni-mate.hu/index.php/aak/article/view/1727

Most read articles by the same author(s)

1 2 > >>