Identification and Analysis of MIMO Systems based on Clustering Algorithm

Authors

  • Balázs Feil University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158 , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158.
  • János Abonyi University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158 , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158. https://orcid.org/0000-0001-8593-1493 (unauthenticated)
  • Sándor Németh University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158 , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158. https://orcid.org/0000-0003-1881-4216 (unauthenticated)
  • Péter Árva University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158 , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158.
  • János Madár University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158 , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158.

Keywords:

MIMO model, clustering algorithm, state-space reconstruction, chaotic time series

Abstract

This paper presents a compact Takagi-Sugeno fuzzy model that can be effectively used to represent MIMO dynamical systems. For the identification of this model a modified Gath-Geva fuzzy clustering algorithm has been developed. The case studies demonstrate that the proposed algorithm can be a useful and effective tool to select the embedding dimension of a dynamical system. This is a key step toward the analysis and prediction of nonlinear and chaotic time-series. The clustering is applied in the reconstruction space defined by the lagged output variables. The main advantage of the proposed solution is that three tasks are simultaneously solved during clustering: selection of the embedding dimension, estimation of the intrinsic (local) dimension, and identification of a model that can be used for prediction. The results were excellent in the case of the analyzed, three and four dimensional systems. Programs and data sets will be available via Internet on our web page http://www.fmt.vein.hu/softcomp/timeseries.

Author Biography

  • János Abonyi, University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O. Box 158, Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8201 Veszprém, Pf. 158.

    corresponding author
    abonyij@fmt.vein.hu

References

Abonyi, J., Babuska, R. (2000). Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models. In Proceedings IEEE International Conference on Fuzzy Systems, San Antonio, USA. https://doi.org/10.1109/FUZZY.2000.839140

Abonyi, J., Szeifert, F. (2002) Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man and Cybernetics, Part B., in print. https://doi.org/10.1109/TSMCB.2002.1033180

Adeli, H., Jiang, X. (2003). Fuzzy clustering approach for accurate embedding dimension identification in chaotic time series. Integrated Computer-Aided Engineering, 10(3), 287–302. https://doi.org/10.3233/ICA-2003-10305

Babuska, R. (1998). Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston. https://doi.org/10.1007/978-94-011-4868-9

Babuska, R., Verbruggen, H. B. (1997). Fuzzy set methods for local modeling and identification. In R. Murray-Smith and T. A. Johansen, editors, Multiple Model Approaches to Nonlinear Modeling and Control, 75–100. Taylor & Francis, London, UK.

Bezdek, J. C., Howard, R. E., Wilson, C. A., Windham, M. P., Hathaway, R. J. (1987). Local convergence analysis of a grouped variable version of coordinate descent. Journal of Optimization Theory and Applications, 71. 471–477. https://doi.org/10.1007/BF00940196

Cadzow, J. A., Liang, G., Wilkes, D. M. (1993). ARMA model order estimation based on the eigenvalues of the covariance matrix. IEEE Transactions on Signal Processing, 41(10), 3003–3009. https://doi.org/10.1109/78.277805

Gath, I., Geva, I. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 773–781. https://doi.org/10.1109/34.192473

Gershenfeld, N., Schoner, I. B., Metois E. (1999). Cluster-weighted modelling for time-series analysis. Nature, 397. 329–332. https://doi.org/10.1038/16873

Gustafson, D. E., Kessel W. C. (1979). Fuzzy clustering with fuzzy covariance matrix. In Proceedings of the IEEE CDC, San Diego, 761–766.

Hathaway, R. J., Bezdek, J. C. (1993). Switching regression models and fuzzy clustering. IEEE Transactions on Fuzzy Systems, 1(3), 195–204. https://doi.org/10.1109/91.236552

Hoppner, F., Klawonn, F., Kruse, R., Runkler, T. (1999). Fuzzy Cluster Analysis - Methods for Classification, Data Analysis and Image Recognition. John Wiley and Sons.

Kim, E., Park, T. M., S. Kim, S. (1998). A transformed input-domain approach to fuzzy modeling. IEEE Transactions on Fuzzy Systems, 6(4), 596–604. https://doi.org/10.1109/91.728458

Murray-Smith, R., Johansen, T. A. editors. (1997). Multiple Model Approaches to Nonlinear Modeling and Control. Taylor & Francis, London, UK.

Takagi, T., Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116–132. https://doi.org/10.1109/TSMC.1985.6313399

Takens, F. (1981). Detecting strange attractor in turbulence. Rand, D. A., Young, L. S. (Eds.), Dynamical Systems and Turbulence, Springer, Berlin, 366–381. https://doi.org/10.1007/BFb0091924

Yao, W. (2002). Improving Security of Communication via Chaotic Synchronization. Phd thesis, the University of Western Ontario.

Downloads

Published

2004-10-15

How to Cite

Feil, B., Abonyi, J., Németh, S., Árva, P., & Madár, J. (2004). Identification and Analysis of MIMO Systems based on Clustering Algorithm. Acta Agraria Kaposváriensis, 8(3), 191-203. https://journal.uni-mate.hu/index.php/aak/article/view/1726

Most read articles by the same author(s)

1 2 > >>