Segmentation of historical process data based on fuzzy clustering algorithm

Authors

  • Balázs Feil University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O.Box 158. , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8200 Veszprém, Pf. 158.
  • János Abonyi University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O.Box 158. , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8200 Veszprém, Pf. 158. https://orcid.org/0000-0001-8593-1493 (unauthenticated)
  • Sándor Németh University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O.Box 158. , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8200 Veszprém, Pf. 158. https://orcid.org/0000-0003-1881-4216 (unauthenticated)
  • Péter Árva University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O.Box 158. , Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8200 Veszprém, Pf. 158.

Keywords:

data analyse, clustering, process engeneering, fuzzy models, time periods

Abstract

The segmentation of historical process and business data is an important data-mining task, as the resulted segments are used for building predictive models, effective storing and querying of historical databases, and rule-searching. In this paper a tool is presented which can analyse the data collected during the operation of technologies and can determine the time periods in which the behaviors of the analysed variables are similar. This tool is based on fuzzy clustering. The effectiveness of the proposed algorithm is presented in the case studies based on real data sets from the polyethylene factory of the TVK Ltd. The results prove well that this tool can be applied to distinguish the typical operational periods i.e. to qualify the operation of the technology posteriorly based on the measured data.

Author Biography

  • János Abonyi, University of Veszprém, Department of Process Engineering, H-8201 Veszprém, P.O.Box 158., Veszprémi Egyetem, Folyamatmérnöki Tanszék, 8200 Veszprém, Pf. 158.

    corresponding author
    abonyij@fmt.vein.hu

References

Abonyi J., Feil B., Szeifert, F. (2002). 7th Online World Conference on Soft Computing in Industrial Applications. Determining the Model Order of Nonlinear Input – Output System by Fuzzy Clustering.

Abonyi J., Babuska, R., Feil, B. (2003). Structure Selection for Nonlinear Input–Output Models Based on Fuzzy Cluster Analysis. The IEEE International Conference on Fuzzy Systems, St. Louis, MO, USA. https://doi.org/10.1109/FUZZ.2003.1209408

Alander, J. T., Frisk, M., Holmstöm, L., Hämäläinen, A., Tuominen, J. (1991). Process error detection using self-organizing feature maps, In Artificial Neural Networks, II., 1229–1232. North-Holland. https://doi.org/10.1016/B978-0-444-89178-5.50058-0

Ayres, C. A. (1986). Loop reactor setting leg system for preparation…, US 4. 613. 484.

Baldwin, J. F., Martin T. P., Rossiter, J. M. (1998.) Time Series Modelling and Prediction using Fuzzy Trend Information. Proceedings of Fifth International Conference on Soft Computing and Information/Intelligent Systems, 499–502.

Brandrup, J., Imergut, E. H. (1975). Polymer Handbook (Second edition) Joch Wiley & Sons Inc. Canada.

Doymaz, F., Chen, J., Romagnoli, J. A., Palayoglu, A. (2001). A Robust Strategy for Real-Time Process Monitoring. Journal of Process Control, 11(4), 343–359. https://doi.org/10.1016/S0959-1524(00)00004-4

Feil, B. (2001). Nemlineáris bemenet-kimenet modellek rendűségének meghatározása csoportosítási algoritmus segítségével. Veszprémi Egyetem, Intézményi TDK.

Fujiwara T., and Nishitani, H. (1994). Abstraction of Operating Data on the Episode Map. Proceedings of the 1st Asian Control Conference (ASCC94), 725–728.

Gertler, J. (1988). Survey of Model-Based Failure Detection and Isolation in Complex Plants, IEEE Control Systems Magazine, December. https://doi.org/10.1109/37.9163

Goser, T. K. (1991). Self - Organizing Feature maps for process control in chemistry. In Artificial Neural Networks, 847–852. North-Holland.

Goutte, C., Toft, P., Rostup, E., Nielsen F.Å., Hansen, L. K. (1998). On Clustering fMRI Time Series, NeuroImage, 9(3), 298–310. https://doi.org/10.1006/nimg.1998.0391

Harris, T., Kohonen, T. (1993). SOM based machine health monitoring systems which enables diagnosis of faults not seen in the training set. In Proc. of the Int. Conf. On Neural Networks (IJCNN`93), Nagoya, Japan, I., 947–950. https://doi.org/10.1109/IJCNN.1993.714067

Huang, S-H., Qian, S-H., Shao, H-H. (1995). Human-Machine Cooperative Control for Ethylene Production, Artificial Intelligence in Engineering, 9(3), 203–209. https://doi.org/10.1016/0954-1810(95)00007-6

Kalafszki, L., Budai, G. (1999). A polietilén II., Magyar Kémikusok Lapja, 2. 70–81.

Kassalin, M., Kangas, J., Simula, O. (1992). Process state monitoring using self-organizing maps, In Artificial Neural Networks, II., 1531–1534. North-Holland. https://doi.org/10.1016/B978-0-444-89488-5.50152-4

Keogh, E., Chu, S., Hart D., Pazzani, M. (2001). An Online Algorithm for Segmenting Time Series, IEEE International Conference on Data Mining.

Kivikunnas, S. (1998). Overview of Process Trend Analysis Methods and Applications. ERUDIT Workshop on Applications in Pulp and Paper Industry.

Kohonen, T. (1990). The Self-Organizing Map, Proceedings of the IEEE, 78(9), 1464–1480. https://doi.org/10.1109/5.58325

Kosanovich K. A., Piosovo, M. J. (1997). A Dynamical Supervisor Strategy for Multi-Product Processes, Computers & Chemical Engineering, 21(Suppl.), 149–154. https://doi.org/10.1016/S0098-1354(97)87494-7

Lakshminarayanan, S., Fujii, H., Grosman, B., Dassau, E., Lewin, D.R. (2000). New product design via analysis of historical databases. Computers and Chemical Engineering, 24(2–7), 671–676. https://doi.org/10.1016/S0098-1354(00)00406-3

Lane, S., Martin, E. B., Kooijmans, R., Morris, A. J. (2001). Performance Monitoring of a Multi-Product Semi-batch Process. Journal of Process Control, 11(1), 1–11. https://doi.org/10.1016/S0959-1524(99)00063-3

Last, M., Klein Y., Kandel, A. (2000). Knowledge Discovery in Time Series Databases, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 31(1), 160–169. https://doi.org/10.1109/3477.907576

Lindheim C., Kristian Lien, M. (1997). Operator Support Systems for New Kinds of Process Operation Work. Computers & Chemical Engineering, 21(Suppl.), S113–S118. https://doi.org/10.1016/S0098-1354(97)87488-1

MacGregor, J. F., Kourti, T. (1995). Statistical process control of multivariate processes. Control Eng. Practice, 3(3), 403–414. https://doi.org/10.1016/0967-0661(95)00014-L

Meketta, J. J. (1992). Encyclopedia of Chemical Processing & Design, Marcel Delker Inc., New York.

Mishitani, H. (1996). Human-Computer Interaction in the New Process Technology. Journal of Process Control, 6(2–3), 111–117. https://doi.org/10.1016/0959-1524(96)86053-7

Pal, N. R. (1999). Soft computing for feature analysis, Fuzzy Sets and Systems, 103(2), 201–221. https://doi.org/10.1016/S0165-0114(98)00222-X

Principe J. C., Wang L., Motter, M. A. (1998). Local Dynamic Modleing with Self- Organizing Maps and Applications to Nonlinear System Identification and Control. Proceedings of the IEEE, 86(11), 2241–2258. https://doi.org/10.1109/5.726789

Redman, J. (1991). Polyethylene, The Chemical Engineer, Sep. 26. 26–29.

Stephanopoulos G., and Han, C. (1995). Intelligent Systems in Process Engineering: A Review, May 11.

Wang, X. Z. (1999). Data Mining and Knowledge Discovery for Process Monitoring and Control, Springer. https://doi.org/10.1007/978-1-4471-0421-6

Wong, J. C., McDonald J. C. K., Palazoglu, A. (1998). Classification of process trends based on fuzzified symbolic representation and hidden Markov models, J of Process Control, 8(5–6), 395–408. https://doi.org/10.1016/S0959-1524(98)00008-0

Published

2003-10-15

How to Cite

Feil, B., Abonyi, J., Németh, S., & Árva, P. (2003). Segmentation of historical process data based on fuzzy clustering algorithm. Acta Agraria Kaposváriensis, 7(3), 69-86. https://journal.uni-mate.hu/index.php/aak/article/view/1663

Most read articles by the same author(s)

<< < 1 2