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ABSTRACT - The role of mycotoxins has been recognized in the etiology of a number of human diseases. 
Therefore, biomonitoring of human mycotoxin exposure is very important. One of the possible ways to 
do this is the urinary biomarker-based exposure determination. Over the past few decades, such stud-
ies have been conducted in many countries around the world on volunteers of different ages, genders, 
and eating habits, although these studies do not always use the same measurement, and calculation 
methods. This review focuses on the most important fusarium mycotoxins (deoxynivalenol (DON), 
zearalenone (ZEA), fumonisins (FUM), T-2, and HT-2 toxins). Because of the presence of mycotoxins in 
the environment-feed-food chain, One Health strategies should be adopted for the prevention of their 
exposure. 
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INTRODUCTION 

Mycotoxins are secondary metabolites of molds. They cause great economic 
losses through their frequent occurrence in the food chain and pose a serious 
health risk to both animals and humans. These toxins are aggressive cytotox-
ins, resistant to gastric juice, insensitive to high temperatures (100-200 °C), 
may accumulate in various organs, directly and/or indirectly inhibit the body's 
specific defence mechanism (Jávor and Szigeti, 2011 a and b).  

Different mycotoxins develop different diseases in different species (liver 
carcinoma, esophageal cancer, kidney damage, etc.). When different mycotox-
ins are occurring at the same time, synergistic, additive, or antagonistic inter-
actions can occur (multi-mycotoxic effect) (Kovács et al., 2016).  

Fusarium mycotoxins occur worldwide in cereal grains. Mammalian cell 
cultures were used to show the cytotoxicity of the most common Fusarium my-
cotoxins; deoxynivalenol (DON), zearalenone (ZEA), fumonisin B1 (FB1) and 
moniliformin (MON). For each Fusarium mycotoxin the most sensitive cell line 
was determined for further toxicological experiments as an alternative of liv-
ing animal testing. For DON and FB1 Chinese hamster ovary cells (CHO-K1) 
were found to be the most sensitive, the IC50 values were 0.27 and 85.5 μg/ml, 
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respectively, after 48-h exposure. For MON the hepatocellular carcinoma cells 
(HepG2) showed the highest sensitivity, the IC50 values were 39.5 μg/ml for 
48 h and 26.8 μg/ml for 72-h exposure. For ZEA Balb/c mice keratinocyte cell 
line (C5-O) was found to be the most sensitive, the IC50 value was 24.1 μg/ml 
after 72-h exposure. In this study DON was found to be the most cytotoxic of 
all the mycotoxins they tested, MON was the second most cytotoxic, followed 
by ZEA, and FB1. The results suggests that CHO-K1, C5-O, and HepG2 cells are 
the appropriately sensitive cell lines for biomonitoring of DON, ZEA and MON 
contaminated feed and food extracts (Cetin & Bullerman, 2005). 

Methods for testing mycotoxins and their residues have evolved a lot, and 
become widely known and available.  

Formation of mycotoxins can vary between fungal species as well as within 
a given species. Numerous physical, chemical, and biological methods have 
been developed to address the mycotoxin problem, but large-scale, practical, 
and cost-effective methods for treating mycotoxin-containing feeds are not 
currently available. For the contaminated foods and feeds detoxification strat-
egies should be used to reduce or eliminate the adverse effects of mycotoxins, 
improving food and feed safety and prevent economic losses (Manal et al., 
2012). Depending on their mode of action, feed additives may act either by 
binding mycotoxins to their surface (adsorption), or by degrading or trans-
forming them into less toxic metabolites (biotransformation) (Kolosova & 
Stroka, 2011). From the several mycotoxin reduction methods, it should not be 
stated that a single method is unconditionally effective to eliminate mycotoxin 
contamination of plants or to prevent the resulting health effects. Prevention 
strategies, cleaning and sorting methods are widely used as they serve as a 
first-line barrier to rid the material of various contaminants, including myco-
toxins. However, other feed production technologies that also have a myco-
toxin reducing effects, such as milling, dehulling and thermal methods can be 
controversial and limited by different practical conditions. Some physical re-
moval methods results high weight loss, which can be a dilemma in practical 
manufacturing. Feed additives specifically against mycotoxins are promising 
but they are still in their infancy, as in the in vitro performance of some prod-
ucts is inconsistent and their in vivo performance requires more evidence 
(Peng et al., 2018). 

Applying the One Health approach helps to protect the population from the 
direct (on health) and indirect (economic, on trade and livelihood) effects of 
mycotoxins. The practical application of this approach is useful for the devel-
opment of a functioning risk management system. Development initiatives for 
management systems for the early prevention of toxic exposure are important 
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(Ladeira et al., 2017). A basic and effective measure to reduce fungal contami-
nation in facilities for the storage of susceptible plants is to regulate the envi-
ronment by manipulating ecological factors. This minimizes the entry of my-
cotoxins from fungi into the feed and food chain and ultimately reduces their 
adverse effects on animal and human health (Imran et al., 2020). 

It is a worldwide problem, that mycotoxins contaminate food and 
feedstuffs. Acute mycotoxicosis caused by high doses is currently rare. But in-
gestion of low and medium doses of Fusarium mycotoxins is quite common. 
These low amounts may weaken immune function and intestinal health, has 
effect on pathogen fitness and host-pathogen interactions, thus it can cause a 
different outcome of the exposure. The exposure of DON and other Fusarium 
mycotoxins generally makes worse the infection with viruses, bacteria and 
parasites in wide range of host species. For example: coccidiosis in poultry 
(Girgis et al., 2008; Girgis et al., 2010), enteric septicaemia of catfish (Manning 
et al., 2005; Manning et al., 2013), salmonellosis in pigs (Vandenbroucke et al., 
2011; Verbrugghe et al., 2012) and mice (Tai & Pestka, 1988) and necrotic en-
teritis in poultry (Antonissen et al., 2014 b). On the other hand, the T-2 toxin 
decreases the colonization capacity of Salmonella in the pig intestine. Although 
the effect of Fusarium mycotoxin exposure on infectious disease in human is 
less known, the animal model based extrapolations suggest possible aggrava-
tion of e.g. salmonellosis and colibacillosis in human, as well (Antonissen, 2014 
a). 

Mycotoxin-producing fungi mainly infect cereals, partly already in the pro-
duction area (field molds) and partly during storage (storage molds). These 
toxins can be found in larger quantities mainly in whole-grain bakery products, 
bread, pasta, cereals, muesli. These compounds are resistant to various food 
production operations and can accumulate in the body when consumed. Many 
mycotoxins are renal and/or hepatotoxic and carcinogenic compounds, neu-
rotoxics or endocrine disruptors. At-risk groups include those aged 0-5, those 
over 70, expectant mothers, and those with chronic diseases that weaken the 
various immune responses. Consuming cereals from controlled sources is par-
ticularly important in these groups. Furthermore, in the case of developing 
schoolchildren and young people, care should be taken not to overdo the con-
sumption of whole grain-cereals (NNK, 2020).  

In different type of foods, Regulation (EC) No 1126/2007 also regulates the 
maximum levels for DON and ZEA (Table 1). Commission Recommendation 
2013/2007 / EU sets maximum recommended concentrations of T-2 and HT-
2 toxins in different type of foods (Table 2). 
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Table 1 
Maximum levels for DON and ZEA in foods  

Mycotoxin Product Maximum levels 
(ppm) 

DON 

Cereals intended for direct human consumption, cereal 
flour, bran and germ as end-product marketed for direct 
human consumption 

0,75 

Pasta (dry) 0,75 
Bread (including small bakery wares), pastries, biscuits, 
cereal snacks and breakfast cereals 

0,5 

Processed cereal-based foods and baby foods for infants 
and young children 

0,2 

ZEA 

Cereals intended for direct human consumption, cereal 
flour, bran and germ as end-product marketed for direct 
human consumption 

0,075 

Refined maize oil 0,4 

Bread (including small bakery wares), pastries, biscuits, 
cereal snacks and breakfast cereals, excluding maize-
snacks and maize-based breakfast cereals 

0,05 

Maize intended for direct human consumption, maize-
based snacks and maize-based breakfast cereals 

0,1 

Processed cereal-based foods (excluding processed 
maize-based foods) and baby foods for infants and young 
children 

0,02 

(Commission of the European Communities Regulation (EC) No 1126/2007) 

Table 2 
Maximum recommended levels for T-2 and HT-2 toxins in food  

Mycotoxin Product Maximum recom-
mended levels (ppm) 

T-2+HT-2 
Cereal products for 
human consump-
tion 

Oat bran and flaked oats 0,2 

Breakfast cereals including formed 
cereal flakes 

0,075 

Bread (including small bakery 
wares), pastries, biscuits, cereal 
snacks, pasta 

0,025 

Cereal-based foods for infants and 
young children 

0,015 

(European Commission Recommendation 2013/165 / EU) 

Commission Regulation (EC) No 1126/2007 regulates, inter alia, maximum 
levels for fumonisins (FUM) in different type of foods. The concentrations 
specified in the Regulation are given for FB1 + fumonisin B2 (FB2) (Table 3).  
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Table 3 
Maximum levels for fumonisins in food 

Mycotoxin Product Maximum levels 
(ppm) 

FB1+FB2 

Unprocessed maize, excepted for unprocessed maize in-
tended to be processed by wet milling 

4 

Maize intended for direct human consumption, maize-
based foods for direct human consumption, excepted for 
foodstuffs listed in * and ** 

1 

* Maize-based breakfast cereals and maize-based snacks 0,8 
** Processed maize-based foods and baby foods for in-
fants and young children 

0,2 

(Commission of the European Communities Regulation (EC) No 1126/2007.)  

 
Exposure can be determined by two different approaches, one indirect by 

combining food consumption and contamination data, and another, a direct 
approach based on biomarkers. In both approaches, exposure is expressed as 
probable daily intake (PDI).  

In risk assessment of mycotoxins, food consumption data and occurrence 
data from the corresponding foods are normally used to estimate population 
exposure. However, this method cannot estimate the individual intake, usually 
does not consider all kinds of sources of contamination, so biomarker-based 
methods are hence more and more used to assess dietary exposure from blood 
or urine concentrations (Turner et al., 2012). 

The determination of maximum tolerable contamination levels for myco-
toxins is commonly based on estimations of tolerable daily intakes (TDIs) re-
garding comprehensive food consumption databases in single countries or re-
gions. The European Food Safety Authority (EFSA) defined TDIs (Table 4). 

Table 4 
Tolerable Daily Intake values (TDIs) defined by European Food Safety Authority (EFSA) 

Mycotoxin TDI (μg/kg body weight/ day) Source of information 
DON 1 EFSA, 2017 
ZEA 0,25 EFSA, 2011 a) 
T-2+HT-2 0,1 EFSA, 2011 b) 
FB1 1 EFSA, 2018 

(EFSA, 2017; EFSA, 2011 a; EFSA, 2011 b; EFSA, 2018) 

BIOMARKERS USED FOR EACH FUSARIUM TOXIN 

FB1 levels in human urine show huge variability even under controlled condi-
tions, which suggests that regulating the urinary excretion of fumonisin is a 
complex process. Nevertheless, the results confirm that urinary FB1 content is 
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a useful biomarker to assess exposure in ongoing population-based studies. If 
the level of exposure is relatively constant, there shouldn’t be significant dif-
ference between morning and afternoon urine samples. However, it is compli-
cated to link urinary FB1 content to dietary fumonisins because there are sig-
nificant differences between individuals and the rate of excretion may also 
vary. Nevertheless, monitoring urinary FB1 levels - combined with the use of 
multiple-mechanism biomarkers - is an important tool in the investigation of 
fumonisins (as contributing factor of the development of human diseases such 
as esophageal cancer), especially in areas where the population consumes 
large amounts of maize and thus high exposure is probable. Eight volunteers 
from Guatemala consumed foods contaminated with FB1 (mean 2.94 ± 0.55 
μg/kg). The urinary recovery of FB1 in these cases averaged 0.5 ± 0.24% of the 
dose (Riley et al., 2012). 

FB1 is a structural analogue of sphinganine, that is why FB1 is a specific 
inhibitor of the ceramide synthetase enzyme, thus interfering with the for-
mation of complex sphingolipids (Wang et al., 1992). In animal experiments 
blood and urine sphinganine/sphingosine (SA/SO) concentrations predicted 
fumonisin toxicity early, specifically and sensitively. However, it is not a sensi-
tive indicator of the extent of FUM uptake in humans and is not a good bi-
omarker for estimating human exposure (Van der Westhuizen et al., 2008). In 
the case of fumonisins, urinary FB1 level is probably the most appropriate ex-
posure biomarker in humans. Furthermore, DON, which was detected in urine, 
was also found to be strongly correlated with the amount of DON consumed 
(Turner et al., 2011 a). 

Shephard et al. (2013) found that urinary biomarker-based mycotoxin 
measurement is a valuable and efficient method for the detection of various 
mycotoxins (including DON, ZEA, α-zearalenol (α-ZOL), β-zearalenol (β-ZOL) 
and FB1). This is especially true in areas where it is difficult to collect food 
samples and it is hard to study food consumption data. This was the first pub-
lication on urinary DON, ZEA, α- and β-ZOL. 

In the case of DON, urinary metabolites and in vitro results indicate that the 
major detoxification pathway is glucuronidation (Maul et al., 2012). The epox-
idation pathway is likely to be less significant in humans (Piekkola et al., 2012). 
T-2 and HT-2 toxins and their metabolites are rare in human urine (Fan et al., 
2019). 
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ANALYTICAL DETERMINATION OF URINE BIOMARKERS 

Numerous studies have been published worldwide on risk assessment of 
urine-based biomarkers. The urine sample on which the test is based is col-
lected as follows: after the volunteer has accurately recorded the food which 
they consumed for 3 days the volunteer collects urine for 24 hours on the 
fourth day. Participants complete a questionnaire about their health status be-
fore conducting the studies. Samples from individuals with liver and /or kid-
ney disease are generally not considered due to potential disturbances in my-
cotoxin and creatinine metabolism. Samples are stored frozen before 
transport to the site of analysis. Frozen samples are assayed for multi-myco-
toxins (for example DON, DOM-1, FB1, FB2, ZEA, α-ZOL, β-ZOL, ochratoxin A 
(OTA), aflatoxin M1 (AFM1), T-2 toxin, HT-2 toxin, nivalenol (NIV), etc.). Urine 
samples are thawed and centrifuged. The samples are then treated with β-glu-
curonidase / sulfatase enzyme. The hydrolyzed urine is then diluted with wa-
ter and usually purified using an immuno-affinity column. (The column is spe-
cific for the measured mycotoxins. For example when DON is measured, they 
use an immuno-affinity column specific for DON. In case of a multi mycotoxin 
measurement, they can use multi-mycotoxin immuno-affinity columns, which 
are specific for several mycotoxins.) The analyses are carried out by high-per-
formance liquid chromatography-tandem mass spectrometry (LC-MS/MS). 
Toxin content is usually expressed in “µg/L urine” (Solfrizzo et al., 2014; Gerd-
ing et al., 2014; Heyndrickx et al., 2015; Gambacorta et al., 2018; Mitropoulou 
et al., 2018; Franco et al., 2019; Lemming et al., 2020). 

EVALUATION OF RESULTS (CALCULATION OF PDI) 

Using the urine biomarker concentrations measured in different urine tests, 
the PDI of each mycotoxin can be calculated according to the following formula 
(Solfrizzo et al., 2014; Gerding et al., 2014):  

PDI = (C x V x 100) / (W x E) 

where: PDI =probable daily intake of mycotoxin (µg/kg body weight/day) 
C - human urinary biomarker concentration normalized for creatinine (µg/L)* 
V - 24 h human urine volume measured for each volunteer (L) 
W- human body weight measured for each volunteer (kg) 
E - mean urinary excretion rate of mycotoxin* 

*Urinary creatinine levels provide important data on excretion rate and renal function. 
Urine creatinine content is usually determined by a kinetic colorimetric assay based on the 
Jaffe method (Toora & Rajagopal, 2002). The measured toxin concentrations are normalized 
to the urinary creatinine level (mycotoxin concentration/creatinine concentration). 
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The results obtained are finally usually compared with TDIs. 

*A wide variety of excretion rates are used, which greatly influences the PDI 
value and whether it will exceed the TDI value. For example, Gambacorta et al. 
(2013) found strong correlations between the amount of relevant biomarkers 
excreted in 24 h post-dose urine and the amount of mycotoxins ingested in 
piglets. Many studies used these excretion rates in the past years. They found 
that the mean percentages of dietary mycotoxins excreted as biomarkers in 24 
h post-dose urine was 36.8% for ZEA, 28.5% for DON and 2.6% FB1. On the 
other hand Shephard et al. (2013) found, that the excretion rate for FB1 varies 
only 0,5-0,8%. Riley et al. (2012) also found a 0.5% excretion rate in the case 
of FB1 and they calculated with a 50% excretion rate for DON in human. In 
contrast, Warth et al. (2013) found, that the excretion rate for DON is 68%, but 
for ZEA is only 9,4% in humans. 

ESTIMATES OF EXPOSURE IN TROPICAL AND SUBTROPICAL AREAS 

In sub-Saharan Africa (Cameroon) measurements from human urine samples 
have shown that some Cameroonians are highly exposed to various mycotox-
ins. For example, for fumonisins, DON, and NIV the PDI has been found to ex-
ceed the TDI in some cases. Concentrations measured for FB1 are of concern, 
as both the average probable daily intake (APDI) and the maximum probable 
daily intake (MPDI) exceed the TDI (Abia et al., 2013). 

In a survey from Egypt: only 2% (n = 69) of urine samples from pregnant 
women were positive for DOM-1 with values between 0.1 and 0.12 ng/ml. It 
was concluded that deepoxy-deoxynivalenol (DOM-1) is not the main route of 
detoxification (Piekkola et al., 2012).  

During experiments in Brazil, mycotoxins were detected in 53% of food 
samples and 93% of urine samples. Based on the results, high exposure of the 
studied population to DON and fumonisins was established. Although the inci-
dence of aflatoxins was low, the measured concentrations reached potentially 
hazardous values for health. Incidence and exposure levels showed an inverse 
pattern in food and urine samples: measurement based on food samples 
showed smaller, while measurement based on urine samples showed higher 
exposure (Franco et al., 2019). 

Investigations in South Africa showed that urinary FB1 levels are adequate 
to indicate FB1 exposure. The use of this biomarker improves the evaluability 
of exposure data, thereby contributing to the mapping of FUM contamination, 
the development of contamination reduction strategies, and the mapping of 
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health effects (Van der Westhuizen et al., 2011). In South Africa, scientists de-
tected FB1 in nearly 96% of urine samples in a group of home-grown corn-
consuming people (Shephard et al., 2013). Urine studies in Mexico have found 
the LC / MS-MS method to be sufficiently sensitive for the detection of FB1 
(Gong et al., 2008). The One Health approach is particularly justified in rural 
areas of Africa and can prevent population from direct (on health) and indirect 
(e.g. economies) effects of mycotoxins, which represent a serious health prob-
lem as well considerable economic losses. In these poor regions usually no reg-
ulations are available, the infrastructure for prevention and controlling food 
contamination is less developed and they do not allow the rejection of contam-
inated food. A complex risk management system is needed (Ladeira et al., 
2017). 

In urine samples from Haiti, and Bangladesh (n = 42 and 95, respectively), 
FB1 was not detectable in samples from Bangladesh and only 1% of Haitian 
samples contained FB1 (Gerding et al., 2015). 

T-2 and HT-2 toxins were also not detected from urine samples from India 
(n=60) (Warth et al., 2014). Neither T-2, HT-2 and nor HT-2-4 glucuronic acid 
(HT-2-4-GlcA) were detected in samples from Bangladesh and Haiti (n = 42 
and 95, respectively) (Gerding et al., 2015). Furthermore, HT-2 was not de-
tected in the urine samples collected in Nanjing (China) (n=260) and only 2.0% 
of the samples contained T-2 (mean concentration, 2.45 μg/L; range, 0.742–
3.61 μg/L) (Fan et al., 2019). 

ESTIMATES OF EXPOSURE IN EUROPE 

Based on the first approach interpretation of urinary ZEA concentrations, PDIs 
do not exceed TDI (0.25 µg/kg body weight) for European samples (however, 
for urine samples from Haiti and African countries, PDIs exceed TDI). There is 
no difference between men and women in the urinary α-ZoL/ZEA ratio. This 
ratio ranges from 0.83 to 10. Furthermore, the data support that estimation 
based on urine biomarkers is a suitable method to biomonitoring the ZEA ex-
posure (Mally et al., 2016). 

In the UK adult urine survey for DON and DON glucuronides (n = 34), only 
two samples from the same volunteer were positive at very low DOM-1 con-
centrations (0.5-0.8 ng/ml), that was about 1% of the detected DON + DON 
glucuronides (57.9 and 61.8 ng/ml). It was concluded that deepoxy-deoxyni-
valenol (DOM-1) is not the main route of detoxification. In contrast, deoxyni-
valenol conjugated with glucuronic acid (DON-GlcA) by uridine diphosphate 
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glucuronyltransferase (UDP-GT) appears to be the main metabolite. In addi-
tion, unconjugated DON also persisted in the body and was excreted in the 
urine in 68% of the studied group (Turner et al., 2011 b).  

In urine and blood serum studies of Swedish adolescents, and it was found 
that the concentration of DON in the urine is generally low, however, in 2% of 
cases, the PDI exceeds the TDI. In the case of DON, a significant correlation was 
found between cereal consumption and exposure (Lemming et al., 2020). 

Extended urine multi-biomarker analysis of Swedish adults and children 
found that biomonitoring of mycotoxins is a useful tool to confirm mycotoxin 
exposure and in trend analyses. Furthermore, this test method is also an im-
portant tool to support the association of exposure with the consumption of 
certain food groups, at least when there is a major source of mycotoxin intake. 
In addition, the method has a role in exploring the influence of other factors 
(such as the socio-economic situation). The development of these studies is 
highly dependent on the validation of sampling procedures and analytical 
methods, as well as the development of reference materials and toxicokinetic 
studies in humans (Mitropoulou et al., 2018). 

In two Italian volunteers, DOM-1 was not detected in the urine even after 
treatment with β-glucuronidase enzyme. In parallel, a 1.7-fold increase in DON 
concentration was observed using β-glucuronidase enzyme (Lattanzio et al., 
2011). In contrast, when analyzing the urine samples of 32 Belgian volunteers, 
25% of the samples were positive for deepoxy-deoxynivalenol glucuronic acid 
(DOM-1-GlcA) (Huybrechts et al., 2015). 

In southern Italy, mycotoxins (including DON, FB1, ZEA, α-ZOL and, β-ZOL) 
were determined by urinary biomarkers. Several mycotoxins were found in all 
urine samples of volunteers in the study. The PDI estimated by the urinary bi-
omarker approach for DON, FB1, and ZEA was found to fit well with the intake 
calculated from the dietary approach reported in the literature (Solfrizzo et al., 
2014). 

In urine samples from Germany (n=50), FB1 was not detectable in the sam-
ples (Gerding et al., 2015). In general, low FB1 concentrations can be found in 
human urine samples (Vidal Corominas et al., 2018). That is because of low oral 
bioavailability of FB1, which is 5% or less (Schelstraete et al., 2020). Neither T-
2, HT-2 and nor HT-2-4 glucuronic acid (HT-2-4-GlcA) were detected in sam-
ples from Germany (Gerding et al., 2015).  

In Central Europe, studies based on urinary biomarkers have found that 
mycotoxin exposure in the German population is low, except DON and DON-
GlcA, which had a higher incidence and, PDIs calculated from the measured 
concentrations were close to the bid values and exceeded the bid values in 
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12% of cases. No significant correlation could be found between the dietary 
habits of the participants and the mycotoxin exposure. This is presumably due 
to the relatively low number of samples and low exposure values (Gerding et 
al., 2014). However, a strong quantitative correlation was found between die-
tary DON and urinary DON content. Furthermore, urinary monitoring of DON 
was found to be essential for experiments investigating DON exposure and 
health effects (Turner et al., 2010). 

In a study of 27 Austrian volunteers, the mean measured DON+DON-GlcA 
concentration was found to be 20.4 ng/ml (the LOD was 4 ng/ml for DON and 
6 ng/ml for DON-GlcA). 96% of the samples were positive for DON-GlcA, and 
in 22% was free of DON. However, DOM-1 was not detectable. On average, 86% 
(79–95%) of total DON (DON and DON metabolites) was DON-GlcA (Warth et 
al., 2012). Conjugation is probably the main route of detoxification and de-
epoxidation is less important (Schelstraete et al., 2020). 

In Hungary, fumonisin exposure was estimated based on population con-
sumption data of the Hungarian National Food Chain Safety Office (NÉBIH) and 
Hungarian Central Statistical Office (KSH), and FB1 & FB2 contamination of 
edible maize-based foods. The results showed that the average toxin intake of 
the population was well below the reference values set by JECFA (2016): 2 
µg/kg bw/day FB1+FB2+fumonisin B3 (FB3) and EFSA (2018): 1 µg/kg 
bw/day FB1. However, in 1% of the subjects (n = 60), the PDI (in one case it 
was 1,81 µg/kg body weight (bw)/day) exceeded TDI (1 µg/kg bw/day). Chil-
dren’s involvement was 2.5 times bigger than the mean (Zentai et al., 2019). 
On the other hand, when exposure assessment was carried out based on urine 
multi-mycotoxin analysis, the ratio of volunteers with PDI exceeding TDI was 
approx. 12% (calculated by the excretion rate in pigs, according to Gambacorta 
et al., 2013) (unpublished data). 

CONCLUSIONS 

Urine biomarker-based research are widespread worldwide and are widely 
used. The method has a significant scientific background. In different coun-
tries, volunteers of different ages, genders, and diets were studied using this 
method. Urine biomarker-based research is considered a very good method to 
determine Fusarium mycotoxin exposure and assess the human health risk 
they pose. However, it is important to mention that in some cases huge differ-
ences can be found between the excretion rates, and in addition, the data and 
calculation methods found in the literature are not always uniform. For this 
reason, the different results can only be compared by taking these into account. 
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Furthermore, the holistic approach reported by One Health is typically not 
taken into account when evaluating results. 
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