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ABSTRACT 

 
In order to compare four different methods for calculation of a total merit index, a 
stochastic simulation study was conducted. Five normally distributed traits were chosen 
to represent the blocks dairy, beef and fitness of a simulated cattle population. The 
reference method was a full multivariate evaluation based on raw data. The other three 
methods were based on selection index theory with different approaches to calculate 
covariances between estimated breeding values. Additionally a focus was put on the 
implications of varying the residual covariances between traits. All selection index 
methods showed similar results. However, the method currently used in the joint genetic 
evaluation led to noticeable biases in EBVs especially when residual covariances 
between traits were high. Residual covariances seem to have an important impact when 
calculating a total merit index and should not be ignored. Results of the present study 
encourage to move towards a multitrait approach or at least to account for residual 
covariances when combining EBVs into a total merit index.  
(Keywords: total merit index, multitrait evaluation, stochastic simulation) 

 
INTRODUCTION 

 
The total merit index (TMI), which is a function of different estimated breeding values 
(EBV), is used as one of the most important selction criterions worldwide (Miglior et al., 
2005). In modern dairy cattle breeding programs, the TMI is commonly based on 
different production and increasingly on functional traits. Typically EBVs of different 
traits are weighted, concerning their economic importance and combined to a TMI 
(Hazel and Lush, 1942). The use of selection index theory is however faced with some 
challenges: Traits or group of traits are usually evaluated separately based on different 
statistical models, and hence true genetic or/and phenotypic correlations or 
heterogeneous reliabilities are neglected (Ducrocq et al., 2001). This is also the case in 
the joint genetic evaluation of Austrian and German dairy cattle breeds. The TMI and 
several sub-indices for all cattle breeds except Holstein is based on a selection index 
method (Hazel and Lush, 1942) which was proposed by Miesenberger (1997). The TMI 
of Fleckvieh (dual purpose Simmental) and Brown Swiss currently consists of more than 
20 different production and functional traits. EBVs for the TMI as well as for several 
sub-indices are estimated either univariately or multivariately in different linear or non 
linear models. Subsequently EBVs are combined to TMIs or to other sub-indices 
assuming that residual covariances between traits or group of traits are zero. A full 
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multivariate estimation of all traits based on raw data could be considered as the 
optimum methodology but is usually not feasible (Mrode, 2014). Although computer 
power and capacity is increasing quickly it is still demanding to compute all traits, which 
are included in a TMI, together. Experiences of the last years suggest that particularly 
TMIs with low reliabilities (r2) are slightly overestimated. Much effort is put on an 
approximate two-step procedure (Fuerst et al., 2014; Pfeiffer et al., 2014), which was 
proposed by Ducrocq et al. (2001) and validated by Lassen et al. (2007). However, 
alternative combinations of independently estimated breeding values are also evaluated. 
Apart from the method proposed by Miesenberger (1997), two additional similar 
methods described by Götz (2002) are still in discussion. Hence, the objective of the 
present study was the comparison of these methods with a full multitrait animal model. 
This was done in a stochastic simulation study mimicking a simplified breeding scheme 
of Austrian Brown Swiss cattle. Special attention was also put on assuming different 
residual covariances. 

 
MATERIAL AND METHODS 

 
A population structure roughly reflecting the Austrian Brown Swiss cattle population 
was simulated with the stochastic simulation program ADAM (Pedersen et al., 2009). 
Approximately 51,300 cows distributed on 1,710 herds were simulated. Five traits 
following Gaussian distribution were chosen to represent the blocks dairy (fat (FY) and 
protein (PY) yield), beef (net daily gain (NDG)) and fitness (somatic cell count (SCC) 
and non-return rate (NRR) of cows). Further requirements were a wide range of 
heritabilities and genetic correlations as well as economic importance. Four traits FY, 
PY, SCC and NRR were measured on all female animals, NDG was observed on 
approximately 60% of all male animals. Each trait was measured on every animal in all 
herds, no repeated records were assumed. The assumed heritabilities and genetic 
correlations for the five traits are shown in Table 1. Around 25% of young bulls and 
75% of proven bulls were used for matings in the selection scheme. Breeding values and 
phenotypes for the five traits were simulated for base population animals. Afterwards 
animals were selected on a TMI based on multivariately estimated breeding values 
(EBV) over 30 years. Relative economic weights for FY, PY, NDG, SCC and NRR were 
adopted from the values used in routine genetic evaluation, which are 5.4, 53.6, 4.3, 19.7 
and 17% respectively (Fuerst et al., 2013). Three different scenarios with respect to the 
covariances of the residual effects were simulated. In scenarios 0, 1 and 2 residual 
correlations were varied from zero, to half and equal to the genetic correlations, 
respectively. The variation of the residual covariances was specifically evaluated to 
appraise the impact of ignoring residual covariances. In total, ten replicates were 
conducted for each scenario.  
 
Table 1  
 

Heritabilities (on the diagonal) and true genetic correlations (above diagonal) 
 

Trait FY PY NDG SCC NRR 
FY 0.40 0.85 0.10 0.25 -0.20 
PY  0.39 0.10 0.25 -0.20 

NDG   0.27 0.00 0.00 
SCC    0.12 -0.10 
NRR     0.02 
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Method A was a full multitrait animal model based on raw data using the true genetic 
and phenotypic parameters. The model included a fixed herd-year-effect, a random 
genetic and a random residual effect. Subsequently the TMI was calculated as: 

TMIA = EBVFY ωFY + EBVPY ωPY + EBVNDG ωNDG + EBVSCC ωSCC + EBVNRR ωNRR (1) 

where EBV refers to the certain traits; ω denotes the relative economic weights which 
are 5.4% for FY, 53.6% for PY, 4.3% for NDG, 19.7% for SCC and 17% for NRR, 
respectively. Method A was considered to be the reference method. For methods B, C 
and D, EBVs were estimated in univariate animal models including the same effects 
described above. In order to obtain the TMI of method B, which is the currently used 
method (proposed by Miesenberger, 1997), C (proposed by Dempfle; Götz, 2002) and D 
(proposed by Reinhardt; Götz, 2002) equation (1) was applied and covariances between 
the EBVs (σij) of the different methods (indicated by sub-indices B, C, D) were 
calculated as: 

σijB = rgijr
2

ir
2

jσaiσaj  (2) 
 
σijC = rpijrirjσaiσaj  (3) 
 
σijD = rgijrirjσaiσaj  (4) 

 
where rgij is the genetic correlation between traits i and j; r2

i,j are the reliabilities of EBVs 
of traits i and j;σai,j are the additive genetic standard deviations of traits i and j; ri,j are the 
accuracies of EBVs of trait i and j and rpij  is the phenotypic correlation between traits i 
and j. 
This means that only method C accounts for residual correlations. 
 
Estimated breeding values were calculated using the program package MiX99 (Lidauer 
et al., 2013). For all methods, genetic parameters were not re-estimated. The true 
(simulated) simulated parameters were used. All EBVs were standardised to 12 points 
per additive genetic standard deviation. The base was set to 100 for the years 18 to 22.  

 
RESULTS AND DISCUSSION 

 
Across all year groups Spearman rank correlations between the true and the estimated 
breeding values were about 0.86 for scenario 0 and about 0.83 for scenario 2. For 
scenario 1, which is not shown in Table 2, the correlation across all year groups is above 
0.86.  

As in scenario 2 genetic and phenotypic correlations are identical, the results for 
methods C and D are the same. Rank correlations between true and estimated TMIs 
across year groups are moderate, because of relatively low reliabilities in the simulated 
population (approximately 41% of the simulated animals have a r2 below 60%). Rank 
correlations within year groups are rather similar, but slightly lower for method B in 
scenarios 1 and 2. Rank correlations of scenario 2 are in general slightly lower than the 
correlations of scenarios 0 and 1. Furthermore rank correlations between the full 
multivariate method (A) and all other methods, including all scenarios were calculated. 
Rank correlations are in the range of 0.93 to 0.99 within year groups. Across all animals 
rank correlations are between 0.98 and 0.99.  
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Table 2  
 

Rank correlations between the true TMI within year groups for different  
methods for scenarios 0 and 2 

 
Scenario Years A B C D 

0 All 0.8704 0.8612 0.8606 0.8620 
 11−15 0.6399 0.6149 0.6054 0.6122 
 16−20 0.6516 0.6283 0.6244 0.6258 
 21−25 0.6262 0.5923 0.5953 0.5980 
 26−30 0.6657 0.6343 0.6406 0.6404 

Scenario Years A B C D 
2 All 0.8490 0.8346 0.8476 0.8476 
 11−15 0.6274 0.5948 0.6233 0.6233 
 16−20 0.6237 0.5890 0.6196 0.6196 
 21−25 0.5790 0.5288 0.5745 0.5745 
 26−30 0.6190 0.5785 0.6151 0.6151 

 
In this study biases are products of subtracting the true TMI from the estimated TMI. 

This was done for all animals and scenarios. Table 3 shows the bias of scenarios 0 and 2. 
Results for scenario 1 are between scenario 0 and 2.  
 
Table 3  

 
Bias of different TMI methods from the true TMI within year groups  

for scenarios 0 and 2  
 

Scenario Years A B C D 
0 All -0.1 0.1 0.1 0.2 
 11-15 -0.4 -1.5 -1.2 0.4 
 16-20 -0.1 -0.4 -0.4 0.1 
 21-25 0.1 0.7 0.6 0.1 
 26-30 0.1 1.5 1.2 0.1 
2 All -0.1 -0.6 -0.1 -0.1 
 11-15 -0.3 -3.0 -0.7 -0.7 
 16-20 -0.1 -0.8 -0.2 -0.2 
 21-25 0.0 0.8 0.2 0.2 
 26-30 -0.1 0.7 0.2 0.2 

 
Results of scenario 0, where no residual covariances were assumed, show very good 
results particularly for methods A and D. Methods B and C seem to underestimate the 
animals in the first years in both scenarios. One possibility can be an incomplete 
pedigree and the use of phantom parents groups (Fuerst et al., 2014). However, method 
B leads to an overestimated genetic trend. This trend is more pronounced when residual 
covariances are assumed. This overestimation is even stronger in the best 10% animals 
in TMI per year. Table 4 shows the bias (EBV-TBV) of the TMIs of the top 10% 
animals within year groups.  
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Figure 1 shows the bias for the top animals in scenario 1, which is expressed as a 
downwards bias in the first years and an upwards bias in the last years.  
 
Table 4  

 
Bias of different TMI methods from the true TMI for the top 10% within year 

groups for scenarios 0 and 2 
 

Scenario Years A B C D 
0 All 0.2 1.5 1.7 1.0 
 11-15 -0.2 -0.6 0.3 1.0 
 16-20 0.1 0.4 1.0 0.9 
 21-25 0.4 2.2 2.3 0.9 
 26-30 0.5 3.8 3.1 1.0 
2 All 0.2 2.3 0.6 0.6 
 11-15 -0.2 -0.4 -0.2 -0.2 
 16-20 0.2 1.7 0.5 0.5 
 21-25 0.4 3.7 1.0 1.0 
 26-30 0.4 4.1 1.0 1.0 

 
 
Figure 1  

 
Time trend of bias (EBV-TBV) of different methods for the top 10% animals  

within years for scenario 1 
 

 
 

CONCLUSIONS 
 

Results show that all methods based on selection index theory are quite similar. The 
analysed methods show good results when residual covariances are zero. However, in 
real data residual covariances can have an important impact. It is well known that 
omitting residual covariances when the same animals are recorded in the same 
environment is not valid. The currently used method B shows good results for high 
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reliabilities but leads to inflated deviations mainly in case of low reliabilities. This 
results in a bias particularly for the top animals and can therefore be relevant in terms of 
selection accuracy. For the joint genetic evaluation of Austria and Germany, it is 
intended to replace the current method of TMI calculation by a multitrait approach. If 
this is not working, an adapted method of including residual covariances between traits 
is needed.  
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