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ABSTRACT

The production of synthetic polymers represents an important part of chemical industry. In

these processes it is common that the same process is used for the production of different kind of
products (various molecular weights, compositions, etc.). Therefore, beside the optimization of
the operating conditions related to the production of different products, it is also important to

minimize the time of the grade transition reducing the amount of off-specification products. This
optimization can be considered as an optimal control problem. Among the wide range of tools
and algorithms can be used to solve optimal control problems this paper studies the
applicability of model predictive control (MPC) solutions. In the chemical industry the

influence of MPC is increasing, they are very successful in wide range of industrial
applications. This became possible because more and more algorithms are available for the
implementation of model predictive controllers. MPC requires a proper model for the

prediction of the effect of the current control signal to allow its optimization. It is important to

note that the nonlinear behavior of the process mainly appears during grade transitions than at
steady state operation. This phenomena would require the utilization of nonlinear models in the

controller. However, the application of nonlinear first-principles models is restricted due to the

formulation of these models requires the identification of large amount of kinetic parameters,

which can be very time-consuming and costly. In these situations the applications of data-

driven models models could be more beneficial. Hence this paper MPC solutions for the
optimization of grade transitions based on input/output data driven models is studied. The free
radical polymerization reaction of methyl-metacrylate is considered using azobisisobutironitil
(AIBN) as initiator, and toulene as solvent. The aim of the process is producing different kind of
grades, and the number-average molecular weight was for identify the right state of process,

and it can be influenced by the inlet initiator flow rate. The proposed controller is compared to

the wide-spread applied PID controllers and the control performances results are qualified the

ISE (integral Square of Error) criteria. Using the impulse response and the step response

models of the reactor, Dynamic Matrix Controller as MPC has been designed. The results show

that the performance of the model predictive controller is better than the performance of PID

controller which is also proved by the ISE criteria.

(Keywords: MPC, predictive control, polymerization, impul se response)

OSSZEFOGLALAS

Termékvaltas optimalizalas modell prediktiv szabalyozok segitségével
Dobos L., Németh S., Abonyi J.

Pannon Egyetem, Folyamatmérnoki intézeti Tanszék, Veszprém, Egyetem Gt 10.

A szintetikus polimerek eloallitasa fontos részét képezi a vegyiparnak. Gyakori, hogy
ugyanazt a folyamatot alkamazzdk kiilonbozé termékek eléallitasara (kiilonbozé atlagos
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molekulatomeg, odsszetétel, stb). Kiilonbozé termékekhez kapcsolodo gyartasi feltételek
optimalizalasa mellett azonban fontos, hogy a termékvaltasok kozti un. off-grade termékek
mennyiségét minimalizaljak. A termekvaltas optimaldsa egy optimalis irdanyitasi feladatmak
tekintheto. A széles kérben alkalmazott eszkézok és algoritmusok, amik optimalis iranyitdsi
feladat megoldasara iranyulnak, kéziil a model prediktiv szabalyozokat (MPC) kivalasztva
azoknak az alkalmazhatosaganak vizsgalatara keriilt sor. Az iparban az MPC megoldasok
alkalmazasa egyre terjed, széles korben valo alkalmazhatosaguk miatt. Az MPC-hez
sziikséges egy megfelelo modell, aminek segitségével a pillanatnyi beavatkozo jel hatisa
eldrejelezheto, ami lehetove teszi az optimalizalast. A polimerizdcios reaktorok nem linedris
viselkedése foként termékvaltasoknal jelenik meg, ezért pontos modell az egész terméksalara
vonatkozoan nehezen készithetd. A fehér doboz modellek készitése megoddst jelenthet a
nemlinaris viselkedés leirdsdara, azonban a sziikséges kinetikai paraméterek nehezen és
koltségesen hozzdférhetoek. Ezért adatgyiijtésen-identifikalason alapulo fekete doboz
modellek hasznalata megoldast jelenthet, ahogyan ebben a tanulmanyban is bemenet-
kimenet pontparokon alapulo fekete doboz modellt alkalmazasara keriilt sor. A lejatszodo
folyamat egy gyokds polimerizacios folyamat, aminek a terméke poli-metil metakrilat. A
termék azobisz-izobutironitril iniciator hatasara toluol oldoszeres kornyezetben keletkezik. A
cel kiilonbozé  polimetil-metakrilat  termékekek eloallitasa. A termékek az atlagos
molekultomegiikkel jellemezhetoek, ami az iniciator adagolasaval befolyasolhato. A tervezett
model prediktiv szabdlyozot Osszehasonlitottuk a széles korben alkalmazott PI szabalyozoval
a teljeitmenyiik alapjan, ami az ISE kritérium alapjan szamszeriistheto. A reaktor
sulyfiiggvényén és dtmeneti  fiiggvényén alapulo  konvulicios modellt  felhaszndlva
keszithettiink egy dinamikus matrix szabalyozot (DMC). Az eredmények alapjan, amit szintén
az ISE kritérium mutat, belathato, hogy a DMC szabdlyozo jobb teljesitménnyel rendelkezik.

(Kulcsszavak: MPC, prediktiv iranyitas, polimerizaci ds technol 6giék, konvol iciés modell)

INTRODUCTION

The production of the synthetic polymers represents an important part of chemical
industry. In this industrial segment one reactor is usually used for producing different
kind of products (various molecular weights, compositions, etc.).

During transitions between products, so-called off-spec products are produced. This
product is generally worth less than the on-spec material; therefore it is of interest to
minimize its production. The on-spec material can be produced under varying
circumstances and at varying operating points, which are more or less economically
sound, motivating optimization of the production during production stages.

In these processes a large number of different grades are produced, and the
transition times between the productions may be relatively long and that make the grade
transitions costly in comparison with the total amount ‘on-spec’ production. The
optimization of complex operating processes generaly begins with a detailed
investigation of the process and its control system. It is important to know, how data-
based information can support the optimization of product transition strategies. The
optimization of product grade transition is atypical example for complex optimization in
process industry (McAuley and MacGregor, 1992).

It is common to define an objective function, for example minimize the grade
transition time, this way reducing off-specification products. The nonlinear behavior
mainly appear during grade transitions, so handling these transitions with nonlinear
models are complex and difficult problems to solve, so-called optimization strategies are
time-consuming to define.
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The control of polymerization reactors can be difficult and complex problem, due to the
nonlinear dynamic behavior, the multiplicities of steady states, parametric sensitivity.
One of the problems is the large amount of kinetic parameters, which are essentia for
creating a first principle model, but obtaining these parameters can be very time-
consuming from the literature, laboratories, pilot-plants, and sometimesiit is possible that
the kinetic mechanism can not be available which can also make difficulties while
making the first principle model. So it is useful to find those methods, where these
pieces of information are not necessary, so model can be crated from input-output data,
by identifying the model parameters, and it opens an easier way to develop an
appropriate controller for the process from these data sets.

Unfortunately it is very difficult to find the right tuning parameters for the
controllers in the whole operation range because of the nonlinearity of the process.Since
the models provide the basis pieces of information for developing controllers the
difference of a data-driven linear model and a more accurate first principle model can be
significant.

Since the process trajectory within a processing stage depends on the process
trajectory of the preceding stage, the rigorous approach is to treat the production
optimization problem as a whole, including phases of transition as well as phases of
production. This can be considered as a large-size real-time optimization (RTO) or
dynamic real-time optimization (DRTO) problem (BenAmor et al., 2004), in which
optimal set points or trajectories are calculated in order to minimize economic objectives
subject to constraints. Several algorithms have been published to effectively solve this
production optimization problem using dynamic optimization. These advanced
algorithms can be formulated as a so-called multistage dynamic optimization problem,
where the production time is split up into several processing stages. Most of these tools
require accurate model of the process, which is not always available.

Treating this kind of optimization problems is the main target for us, and this paper
would be an introduction to the optimization methods. In the industry the influence of
model predictive control isincreasing (Camacho et al., 1995), they are very successful in
wide range of industrial applications. In most of the industrial applications the model
predictive controllers are applied in the advanced control level as the part of the
advanced process control (APC) systems. One of the main goal of this study is to explore
the advantages of applying the model predictive controllers in the local control level as
introducing the control problem as a optimization problem, since it is considered as the
basic level of the multi-level optimization of achemical plant. Nowadays more and more
algorithms are available for planning model predictive controllers. It can be useful to
compare the wide-spread applied PID controllers, and the increasingly applied model
predictive controllers. For this study we choose a Pl controller to compare with a
dynamic matrix controller, and we qualified the performance with ISE (integral Square
of Error) criteria.

Paper is organized as follows: the description of the polymerization process, define
the purposes, introduce the theoretical basis of the solution and present the results.

THE CASE STUDY INVESTIGATION OF A POLYMERIZATION PROCESS
Process description
The reactor what have been studied is a SISO (single input-single output) process, a

CSTR where a free radical polymerization reaction of methyl-metacrylate is considered
using azobisisobutironitil (AIBN) as initiator, and toulene as solved (Figure 1). The am
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of the process is to producte different kinds of product grades. The number-average
molecular weight is used for qualifying the product and process state, and it can be
influenced by the inlet initiator flow rate. When this assumption is considered, and the
effect of the temperature is neglected, the multi input-multi output model could be
reduced to a SISO process. Because of the isothermal assumption a four-state model can
be obtained. (Maner and Doyle, 1997)

Figurel

The configuration of SISO polymerization process
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1. abra: A SISO polimerizacios folyamat sémdja
Iniciator(1), Monomer, oldoszer(2), Szabdlyzo(3), NAMW(4), NAMW alapjel(4)

The monomer (methyl-metacrylate), the solvent (toulene), the initiator (azobis
isobutironitil) inlet is contionous to the reactor, an isotherm CSTR (Continously Stirred
Tank Reactor), with a determined concentration. The inlet flow of the monomer is
constant (F). The polymerization starts due to the amount of the initiator in the reactor.
This influences the polymer chain length distribution (Dg-zero order moment of the
chain length distribution) and the distribution of average molecular weight of the
polymer (D,—first order moment of the chain length distribution). From these pieces of
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data the number average molecular weight (NAMW) can be calculated. This data is
characteristic of every polymer product, so to control the pre-defined polymer quality the
value of the NAWM is needed. When the value of the NAWM is different to pre-defined

value the difference can be compensated by controlling theinitiator inlet flow rate.
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where:
Cn - concentration of the monomer in the reactor
Cmin - monomer concentarion in feed
C - initiator concentration in the reactor
Ciin - initiator concentration in feed
DO - zero order moment of the chain length distribution
D, - first order moment of the chain length distribution

Ko, Kim, Ki, Kre, Krq - Kinetic parameters (it can be seen in Table 1)
Tablel

Nominal values and kinetic parameters of thefirst principle model

kre= 1.3281x10" | m3/(kmol*h)
K= 1.0930x10" | m3/(kmol* h)
k= 1.0224x10™" | 1/h

Ky,= 2.4952x10° | m3/(kmol* h)
Km= 2.4522x10° | m3/(kmol* h)
f*= 0.58

F= 1.0 m3/h

V= 0.1 m3

Cin= 8.0 kmol/m3
Mp= 100.12 kg/kmol
Cmjin= 6.0 kmol/m3

1. tablazat: A fehér doboz modell allandoi és kinetikai paraméterei
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Problem description
Thetask is producing three different kind of grades, called A, B, C (Figure 2)

Figure?2

The set point values of changing different productions
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2. dbra: A termékvaltas soran alkalmazott alapjel trajektoria
1dé6 (h)(1), Atlagos molekulatomeg (kg/kmol)(2)

To compare aMPC and a Pl controller two grade transitions were chosen, one of themin
the 2" hour from A product (NAWM 4=25000 kg/kmol) to B product (NAWM z=27500
kg/kmol). B has been produced in the next five hours, and in the 7" hour there is a grade
transition from B to C product (NAWM ¢=22500 kg/kmol).

The main goal is to minimize the amount of the off-grade product, so reduce the
grade transition time as much as possible to show that there are reserved, untapped
possibilities in the the process, and the model predictive controllers may have better
performance than original Pl controllers. The previously introduced set point data set is
used to test the performance of the two different control algorithm, and these can be
qualified using | SE (Integral Square of Error) criteria.

MPC BASED FORMULATION OF OPTIMAL GRADE TRANSITION

Model Predictive Controllers—theoretical basis

MPC is a model based control algorithm where the models are used to predict the
behavior of dependent variables (i.e. outputs) of a dynamical system with respect to
changes in the process independent variables (i.e. inputs). In chemical processes,
independent variables are most often setpoints of regulatory controllers that govern valve
movement (e.g. valve positioners with or without flow, temperature or pressure
controller cascades), while dependent variables are most often constraints in the process
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(e.g. product purity, equipment safe operating limits). The MPC uses the models and
current plant measurements to calculate future moves in the independent variables that
will result in operation that honors all independent and dependent variable constraints.
The MPC then sends this set of independent variable moves to the corresponding
regulatory controller setpoints to be implemented in the process. With the help of the
Figure 3 the essence of the model predictive controlling is easily understandable.

Figure3

The essence of model predicitve controllers
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3. abra: A modell prediktiv szabalyozas lényege/miikodese
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Jové(s)

In this picture the essence and the advantage of the model predictive controllers can be
seen. It means that using the model it becomes possible to predict the effect of the actual
control signal in the future (in the prediction horizon) or to realize the set points in the
future, how the control signal should be variated. MPC has the ability to reckon with the
effect of the realized control signal (model horizon). The aim of the MPC isto minimize
the error between the set points (w.) and the measured values (y.). It can be formulized
in an objective function. To reduce the computing demand of solving the objective
function, it is only solved on the control horizon, and this reducing is also necessary
because the result of the objective function is a control signal trajectory, but just the first
element of the the trgjectory is realized. To get a contionous control signal the objective
function is needed to be solved in every discrete moment.

Formulating the aim of the method, an objective function is the result, which is:

H H,
. - N 2 S 2 . 7
Am!pj)j;l(w(kﬂ) vk + ) +i;Au (k+j-1) ™
where w(k+j) means the set point value, y(k+j) means the predicted dependent value in
the (k+j)th discrete time moment, A4u means the incremention of the control signal, A is
an weight parameter.
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The black box model — Impulse response model
The identification of the dynamic part of a block-oriented model is a challenging task. In
practice, the identification of the parameters of the IRM (Impulse Response Model) may
be troublesome due to the large number of them (Ricker, 1988).

In this case the identification parameters can be obtained easily using ¢ variable
which means:

p(i) =y() - y(i-1) ®)

where y(i) is the output of the process in the ith moment. With the help of ¢ the
parameters of the discrete impul se response model (IRM) can be calculated easily:

Zw(i)

where At denotes the sampling time, i the ith discrete time-step, and N is the model
horizon. This results in a more parsimonious IRM model description, where the variance
of the identification problem is decreased by the decrease of the number of the
parameters to be estimated.

_ Nw(i) ©)

i

The model based predictive controller

The convolution model can be easily applied in model predictive control scheme. The
control agorithm is based on the natural division of the system response into frree and
forced response terms (Abonyi et al. 2000):

ym(k+t):y/brced(k+t)+y‘/'rec(k+t) (10)

where the forced output, y ;. (k + 1), depends only on the future inputs,

yﬁ)i’ced(k + t) = Kzt: SiAu(k +i— l) (11)

i=1
where {si}are the gain independent step response coefficients defined by s, = Z g
j=1

and  Au(k+r-i) denotes the change on the control vaiable:
Aulk+t—i)=ulk+t—i)—u(k+1-i-1).

As the previous equation suggests, the forced response is calculated by using a
linear model, because the steady-state gain, K, is calculated at the kth time step, and is
assumed to be constant during the prediction. In control engineering practice such one
step linearization is commonly used for simplifying the highly computational-demanding
optimisation task. The proposed method differs from these approaches in the calculation
of the free response of the system that represents the effect of the previous control
signals that can interpreted as the future response of the process assuming that the
process input is constant during the prediction horizon, /,. Hence, convolution model is
used to generate this free response, y,.,,(k+i)=0,+y,, where the Q,coefficients are

(Marchietti and Mellchamp, 1983):

Qizzi:Zngu(k—i-t—j), i=12..,H,. (12)

t=1 j=t+1
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The future incremental control actions, w = [w(k +1),...,w(k +H, )]T are obtained by
minimising the following cost function:

min = (w—(ksAu + Y oo )P+ AAUZ 13

where w is the set point vector w = [w(k +1),..., w(k +H, )]7 denotes the future set-point

values, y ., = [y‘,m(k D)y ek +H )F the predicted free-response, and S is the
gain independent dynamic matrix:

51 0 0 0
2 51 0 0
S3 S N . 0
S=| : : : : (14)
Su,  Sw-1 Sw-2 51
_SHv Sw,1 Sw2 T SH,,—H(,+1_

H,xH,

The move suppression coefficient, A, employs a punishment for the variation of the
manipulated variable. For nonlinear processes this constant can be gain-scaled by
expressing it as a product of a scaled move-suppression coefficient, y , and the square of

the process gain, A = y - K 2 (Shridhar, Cooper, 1997).
If the process constraints are not taken into account, the previous minimisation problem
can be solved effectively by least-squares method,

Au:%o(ST~S+}/~1)'1~ST-e (15)

where eisthe vector of the estimated errors € =r - yge, and | isaunity matrix.

The controller has three parameters. These are the prediction horizon, H, the
control horizon, H,, and the gain independent move suppression coefficient, y. The
prediction horizon should roughly be equal to the 60% of the open loop settling time to
ensure controller stability. When the process in nonlinear, the open-loop settling time is
changing with the operating point. According to this effect, the prediction horizon can be
adapted during the operation. A simpler solution is setting the prediction horizon equal
to the 60% of maximum of the settling time. In the application study of this paper we
consider the linear model of the process, and we consider the move-suppression
coefficient, y = 4.7058* 10°. The value of the move suppression coefficient was obtained
with a parameter sensitivity.

MODEL PREDICTIVE CONTROL OF A SISO POLYMERIZATION PROCESS

Model | dentification

For this study we generated input-output data with the white-box model, using sample

time Ts = 0.03h. We identificated our black-box model by these data-sets. Our black box

model is the impulse response model and the step response model, the integral of IRM.
Because of the nonlinearity of the white box model, we have chosen a steady state

point and we identified our black box model around this point (Figure 4). After

identification the model was validated, because of the control of its' reliability.
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Figure4

Validation of the black box model
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4. abra: Az identifikalt konvolicios modell validalasa
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To use the black box model for desing a model predictive control the identificated black
box model is needed to be validated. In this figure the validation can be seen. The blue
line means the response of the black box model and the red line means the response of
the first principle model for the same input signal. The two responses show some
difference because of the nonlinearity of the first principle model, which is obviously has
a different response than the linear black box. As the figure shows it can be stated that
the linear model is appropriate for approximating the response of the non-linear linear
model, so thislinear model can be applied for design aMPC.

RESULTS

The tuning parameters were selected to obtain satisfactory set-point tracking. In this case
setpoint changes mean grade change (determined by the certain values of the NAMW).
We have studied a Pl controller and a model predictive contoller, DMC. The control
signal is between the range u = [0.0046, 0.05] m¥h in both cases. The Pl controller was
implemented to the white box model and, the tuning parameters of it has been obtained
the following way: afirst order plus dead time model was identificated and applying the
parameters of this model the tuning parameters of Pl controller could be obtained with
ITAE method. The controller tuned this with this method can provide a good result
during the grade transitions, asit can be seen in the Figure 5.

The task is to redlize the chosen grade-transitions (A’ product to B’ product in the 2™
hour and'B’ product to’C’ product in the 7" hour) with awide-spread applied PI controller.
The products can be charaterized with the number average molecular weight (NAMW
(kg/kmal)). To control the NAMW the initiator flow rate (the control signa) is varied. The

34



Acta Agr. Kapos. Vol 12 No 2

maximum value of the control signd is 0.05 m3/h, the minimum value is 0.0046 m3/h. The
grade trangitions last approximately an hour, and to qualify these transitions the I SE (Integral
Square of Error) can be calculated. The result is ISE = 3.8418*10". ISE becomes possible to
compare the Pl controller to the MPC.

Figure5

Simulation with PI controller
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5. abra: A PI szabalyozoval elvégzett szimulacio eredménye
Idé6 (h)(1), Atlagos molekulatomeg (kg/kmol)(2), Inicidtor térfogataram (m*/h)(3)

The Pl parameters: K = -6.78*10° TI = 0.225 h, which can ensure a good kind of
controlling. So the new set point (from 25000 kg/kmol to 27500 kg/kmol) is obtained in
1 hour, with a overshoot with approximately %2 decay ratio, and an other set point change
in 7" hour, and the new set point is obtained in an hours.(green line is the set point
signal, blue is the measured signal(NAWM) in both cases). So the length of the grade
transition time can be seen alittle bit long, so finding a method is neccessary to reduce
the grade transition time, or finding a control agorithm which can provide producing
less of f-grade product.

The model predictive controller provides very different kind of controlling due to
the lack of the overshoot. The set point is the same like in the case of PI controller,
because of the comperableness.

The tuning parameters of DMC, is the lenght of the prediction horizon, control
horizon, and the value of the A parameter, and it is also important to define the lenght of
model horizon. The model horizon is N = 30, which was obtained by using the impulse
response model (IRM) of process. The prediction horizon is selected to be p = 5 because
increascing the prediction horizon the quality of controlling is getting worse. The control
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horizon is selected to be ¢ = 4, because when the length of the control horizon converges
the value of the prediction horizon the controller becomes more aggressive (Figure 6).

Figure6

Simulation with DM C controller.
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6. abra: A DMC szabdlyozoval végzett szimuldcio eredménye
1dé (h)(1), Atlagos molekulatomeg (kg/kmol)(2), Inicidtor térfogatdaram (m*/h)(3)

The task is the same as the simulation with the Pl controller. The operating conditions are
also the same. Compare this figure to the previous figure it can be stated that the DMC is
faster in the first grade transtion (A’ to 'B’), approximately 0.5 hour. The second grade
trangition ("B’ to 'C’) takes the same time (1 hour). The advantage of the DMC can be
observed when the value of the I SE has been calculated (ISE = 2.5773*107).

The behavior of DMC controller is definitely different to the Pl controller, but the
DMC can be alittle bit faster than the Pl controller and has no oveshoot.

Examining only the figures the advantage of any controller is very difficult to state.
The error of the PI controller (calculated by |SE method) was 3.8418* 10, but the DMC
controller can afford 2.5773* 10" error. So the advantage of DMC can be stated. Tuning
these two controllers more agressively would result additional ostillations, and lenghten
the time it takes for them to keep the number average of molecular weight in in accurate
value, so a compromise is needed to be made in tuning the controllers for servo-mode.

CONCLUSION
In the chemical industry the importance of the polymerization processes is increasing.

To develop these processes the length of the grade transitions are needed to reduce,
because this way it becomes possible to avoid to produce off-grade products. To reach
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this demand a MPC algorithm was used to handle the grade transitions. In thiswork a Pl
and a MPC controller were compared each other. First we use the first-principle model
of a polymerization process, and using this the black box model was identified. Using
the impulse response and the step response model of the reactor, the DMC could be build
for this reactor. It is seen that the performance of the model predictive controller is
better, than the performance of Pl algorithm. It is also proved by the ISE criteria. The
applicability of applying the model predicitve controllers in the local control level is
confirmed also by the ISE criteria and the visual comparison. The actuality of handling
the control problem as an optimization problem is very high. Generaly, it is very
important to find the best fitting contoller algorithm to realize the objecive function. In a
lot of cases the advantage of MPC agorithms fits better to these objective function, but
they have a huge disadvantage: in most cases it is necessary to use linear model
approaches which are very sensitive for the identified parameters, and in nonlinear
systems these parameters can change different kind of methods are available. The non-
linear model predictive controllers can handle this problem, or adaptive algorithms are
able to solve them. Regarding to the the increasing spread of MPC controllers, because
of the rising industrial demand, it would be useful to develop the nonliner model
predictive controllers, because of the hope of better performance of the whole operating
range.
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