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ABSTRACT 
 
The production of synthetic polymers represents an important part of chemical industry. In 
these processes it is common that the same process is used for the production of different kind of 
products (various molecular weights, compositions, etc.). Therefore, beside the optimization of 
the operating conditions related to the production of different products, it is also important to 
minimize the time of the grade transition reducing the amount of off-specification products. This 
optimization can be considered as an optimal control problem. Among the wide range of tools 
and algorithms can be used to solve optimal control problems this paper studies the 
applicability of  model predictive control (MPC) solutions.  In the chemical industry the 
influence of MPC is increasing, they are very successful in wide range of industrial 
applications. This became possible because more and more algorithms are available for the 
implementation of model predictive controllers. MPC requires a proper model for the 
prediction of the effect of the current control signal to allow its optimization. It is important to 
note that the nonlinear behavior of the process mainly appears during grade transitions than at 
steady state operation. This phenomena would require the utilization of nonlinear models in the 
controller. However, the application of nonlinear first-principles models is restricted due to the 
formulation of these models requires the identification of large amount of kinetic parameters, 
which can be very time-consuming and costly. In these situations the applications of data-
driven models models could be more beneficial. Hence this paper MPC solutions for the 
optimization of grade transitions based on input/output data driven models is studied. The free 
radical polymerization reaction of methyl-metacrylate is considered using azobisisobutironitil 
(AIBN) as initiator, and toulene as solvent. The aim of the process is producing different kind of 
grades, and the number-average molecular weight was for identify the right state of process, 
and it can be influenced by the inlet initiator flow rate. The proposed controller is compared to 
the wide-spread applied PID controllers and the control performances results are qualified the 
ISE (integral Square of Error) criteria. Using the impulse response and the step response 
models of the reactor, Dynamic Matrix Controller as MPC has been designed. The results show 
that the performance of the model predictive controller is better  than the performance of PID 
controller which is also proved by the ISE criteria. 
(Keywords: MPC, predictive control, polymerization, impulse response) 

 
ÖSSZEFOGLALÁS 

 
Termékváltás optimalizálás modell prediktív szabályozók segítségével 

Dobos L., Németh S., Abonyi J. 
Pannon Egyetem, Folyamatmérnöki intézeti Tanszék, Veszprém, Egyetem út 10. 

 
A szintetikus polimerek előállítása fontos részét képezi a vegyiparnak. Gyakori, hogy 
ugyanazt a folyamatot alkamazzák különböző termékek előállítására (különböző átlagos 
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molekulatömeg, összetétel, stb). Különböző termékekhez kapcsolódó gyártási feltételek 
optimalizálása mellett azonban fontos, hogy a termékváltások közti ún. off-grade termékek 
mennyiségét minimalizálják. A termekváltás optimálása egy optimális irányítási feladatnak 
tekinthető. A széles körben alkalmazott eszközök és algoritmusok, amik optimális irányítási 
feladat megoldására irányulnak, közül a model prediktív szabályozókat (MPC) kiválasztva 
azoknak az alkalmazhatóságának vizsgálatára került sor. Az iparban az MPC megoldások 
alkalmazása egyre terjed, széles körben való alkalmazhatóságuk miatt. Az MPC-hez 
szükséges egy megfelelő modell, aminek segítségével a pillanatnyi beavatkozó jel hatása 
előrejelezhető, ami lehetővé teszi az optimalizálást. A polimerizációs reaktorok nem lineáris 
viselkedése főként termékváltásoknál jelenik meg, ezért pontos modell az egész terméksálára 
vonatkozóan nehezen készíthető. A fehér doboz modellek készítése megodást jelenthet a 
nemlináris viselkedés leírására, azonban a szükséges kinetikai paraméterek nehezen és 
költségesen hozzáférhetőek. Ezért adatgyűjtésen-identifikáláson alapuló fekete doboz 
modellek használata megoldást jelenthet, ahogyan ebben a tanulmányban is bemenet-
kimenet pontpárokon alapuló fekete doboz modellt alkalmazására került sor. A lejátszódó 
folyamat egy gyökös polimerizációs folyamat, aminek a terméke poli-metil metakrilát. A 
termék azobisz-izobutironitril iniciátor hatására toluol oldószeres környezetben keletkezik. A 
cél különböző polimetil-metakrilát termékekek előállítása. A termékek az átlagos 
molekultömegükkel jellemezhetőek, ami az iniciátor adagolásával befolyásolható. A tervezett 
model prediktív szabályozót összehasonlítottuk a széles körben alkalmazott PI szabályozóval 
a teljeítményük alapján, ami az ISE kritérium alapján számszerűsthető. A reaktor 
súlyfüggvényén és átmeneti függvényén alapuló konvulúciós modellt felhasználva 
készíthettünk egy dinamikus mátrix szabályozót (DMC). Az eredmények alapján, amit szintén 
az ISE kritérium mutat, belátható, hogy a DMC szabályozó jobb teljesítménnyel rendelkezik. 
(Kulcsszavak: MPC, prediktív irányítás, polimerizációs technológiák, konvolúciós modell) 
 

INTRODUCTION 
 
The production of the synthetic polymers represents an important part of chemical 
industry. In this industrial segment one reactor is usually used for producing different 
kind of products (various molecular weights, compositions, etc.). 

During transitions between products, so-called off-spec products are produced. This 
product is generally worth less than the on-spec material; therefore it is of interest to 
minimize its production. The on-spec material can be produced under varying 
circumstances and at varying operating points, which are more or less economically 
sound, motivating optimization of the production during production stages. 

In these processes a large number of different grades are produced, and the 
transition times between the productions may be relatively long and that make the grade 
transitions costly in comparison with the total amount ‘on-spec’ production. The 
optimization of complex operating processes generally begins with a detailed 
investigation of the process and its control system. It is important to know, how data-
based information can support the optimization of product transition strategies. The 
optimization of product grade transition is a typical example for complex optimization in 
process industry (McAuley and MacGregor, 1992). 

It is common to define an objective function, for example minimize the grade 
transition time, this way reducing off-specification products. The nonlinear behavior 
mainly appear during grade transitions, so handling these transitions with nonlinear 
models are complex and difficult problems to solve, so-called optimization strategies are 
time-consuming to define. 
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The control of polymerization reactors can be difficult and complex problem, due to the 
nonlinear dynamic behavior, the multiplicities of steady states, parametric sensitivity. 
One of the problems is the large amount of kinetic parameters, which are essential for 
creating a first principle model, but obtaining these parameters can be very time-
consuming from the literature, laboratories, pilot-plants, and sometimes it is possible that 
the kinetic mechanism can not be available which can also make difficulties while 
making the first principle model. So it is useful to find those methods, where these 
pieces of information are not necessary, so model can be crated from input-output data, 
by identifying the model parameters, and it opens an easier way to develop an 
appropriate controller for the process from these data sets. 

Unfortunately it is very difficult to find the right tuning parameters for the 
controllers in the whole operation range because of the nonlinearity of the process.Since 
the models provide the basis pieces of information for developing controllers the 
difference of a data-driven linear model and a more accurate first principle model can be 
significant. 

Since the process trajectory within a processing stage depends on the process 
trajectory of the preceding stage, the rigorous approach is to treat the production 
optimization problem as a whole, including phases of transition as well as phases of 
production. This can be considered as a large-size real-time optimization (RTO) or 
dynamic real-time optimization (DRTO) problem (BenAmor et al., 2004), in which 
optimal set points or trajectories are calculated in order to minimize economic objectives 
subject to constraints. Several algorithms have been published to effectively solve this 
production optimization problem using dynamic optimization. These advanced 
algorithms can be formulated as a so-called multistage dynamic optimization problem, 
where the production time is split up into several processing stages. Most of these tools 
require accurate model of the process, which is not always available.  

Treating this kind of optimization problems is the main target for us, and this paper 
would be an introduction to the optimization methods. In the industry the influence of 
model predictive control is increasing (Camacho et al., 1995), they are very successful in 
wide range of industrial applications. In most of the industrial applications the model 
predictive controllers are applied in the advanced control level as the part of the 
advanced process control (APC) systems. One of the main goal of this study is to explore 
the advantages of applying the model predictive controllers in the local control level as 
introducing the control problem as a optimization problem, since it is considered as the 
basic level of the multi-level optimization of a chemical plant. Nowadays more and more 
algorithms are available for planning model predictive controllers. It can be useful to 
compare the wide-spread applied PID controllers, and the increasingly applied model 
predictive controllers. For this study we choose a PI controller to compare with a 
dynamic matrix controller, and we qualified the performance with ISE (integral Square 
of Error) criteria. 

Paper is organized as follows: the description of the polymerization process, define 
the purposes, introduce the theoretical basis of the solution and present the results. 
 

THE CASE STUDY  INVESTIGATION OF A POLYMERIZATION PROCESS 
 

Process description 
The reactor what have been studied is a SISO (single input-single output) process, a 
CSTR where a free radical polymerization reaction of methyl-metacrylate is considered 
using azobisisobutironitil (AIBN) as initiator, and toulene as solved (Figure 1). The aim 
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of the process is to producte different kinds of product grades. The number-average 
molecular weight is used for qualifying the product and process state, and it can be 
influenced by the inlet initiator flow rate. When this assumption is considered, and the 
effect of the temperature is neglected, the multi input-multi output model could be 
reduced to a SISO process. Because of the isothermal assumption a four-state model can 
be obtained. (Maner and Doyle, 1997) 
 
Figure 1 
 

The configuration of SISO polymerization process 
 

 
 
1. ábra: A SISO polimerizációs folyamat sémája 
 
Iniciátor(1), Monomer, oldószer(2), Szabályzó(3), NAMW(4), NAMW alapjel(4) 
 
The monomer (methyl-metacrylate), the solvent (toulene), the initiator (azobis-
isobutironitil) inlet is contionous to the reactor, an isotherm CSTR (Continously Stirred 
Tank Reactor), with a determined concentration. The inlet flow of the monomer is 
constant (F). The polymerization starts due to the amount of the initiator in the reactor. 
This influences the polymer chain length distribution (D0-zero order moment of the 
chain length distribution) and the distribution of average molecular weight of the 
polymer (D1–first order moment of the chain length distribution). From these pieces of 

(1) 

(2) 

(3) 
(5) 

NAMW (4) 
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data the number average molecular weight (NAMW) can be calculated. This data is 
characteristic of every polymer product, so to control the pre-defined polymer quality the 
value of the NAWM is needed. When the value of the NAWM is different to pre-defined 
value the difference can be compensated by controlling the initiator inlet flow rate. 
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where: 
Cm  - concentration of the monomer in the reactor 
Cm,in  - monomer concentarion in feed 
CI   - initiator concentration in the reactor 
CI,in   - initiator concentration in feed 
D0   - zero order moment of the chain length distribution 
D1   - first order moment of the chain length distribution 
kp, kfm, kI, kTc, kTd - kinetic parameters (it can be seen in Table 1) 
 
Table 1  
 

Nominal values and kinetic parameters of the first principle model 
 

kTc= 1.3281x1010 m3/(kmol*h) 
kTd= 1.0930x1011 m3/(kmol*h) 
kI= 1.0224x10-1 1/h 
kp= 2.4952x106 m3/(kmol*h) 
kfm= 2.4522x103 m3/(kmol*h) 
f*= 0.58  
F= 1.0 m3/h 
V= 0.1 m3 
CI,in= 8.0 kmol/m3 
Mm= 100.12 kg/kmol 
Cm,in= 6.0 kmol/m3 

 
1. táblázat: A fehér doboz modell állandói és kinetikai paraméterei 



Dobos et al.: Optimization of Product Grade Transition by Model Predictive Control 

30 

Problem description 
The task is producing three different kind of grades, called A, B, C (Figure 2) 
 
Figure 2 
 

The set point values of changing different productions 
 

 
 
2. ábra: A termékváltás során alkalmazott alapjel trajektória 
 
Idő (h)(1), Átlagos molekulatömeg (kg/kmol)(2) 
 
To compare a MPC and a PI controller two grade transitions were chosen, one of them in 
the 2nd hour from A product (NAWMA=25000 kg/kmol) to B product (NAWMB=27500 
kg/kmol). B has been produced in the next five hours, and in the 7th hour there is a grade 
transition from B to C product (NAWMC=22500 kg/kmol).  

The main goal is to minimize the amount of the off-grade product, so reduce the 
grade transition time as much as possible to show that there are reserved, untapped 
possibilities in the the process, and the model predictive controllers may have better 
performance than original PI controllers. The previously introduced set point data set is 
used to test the performance of the two different control algorithm, and these can be 
qualified using ISE (Integral Square of Error) criteria.  
 

MPC BASED FORMULATION OF OPTIMAL GRADE TRANSITION 
 
Model Predictive Controllers– theoretical basis  
MPC is a model based control algorithm where the models are used to predict the 
behavior of dependent variables (i.e. outputs) of a dynamical system with respect to 
changes in the process independent variables (i.e. inputs). In chemical processes, 
independent variables are most often setpoints of regulatory controllers that govern valve 
movement (e.g. valve positioners with or without flow, temperature or pressure 
controller cascades), while dependent variables are most often constraints in the process 

(1) 

(2
) 
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(e.g. product purity, equipment safe operating limits). The MPC uses the models and 
current plant measurements to calculate future moves in the independent variables that 
will result in operation that honors all independent and dependent variable constraints. 
The MPC then sends this set of independent variable moves to the corresponding 
regulatory controller setpoints to be implemented in the process. With the help of the 
Figure 3 the essence of the model predictive controlling is easily understandable.  
 
Figure 3 
 

The essence of model predicitve controllers 
 

 
 

3. ábra: A modell prediktív szabályozás lényege/működése 
 
Modellezési tartomány(1), Predikciós tartomány(2), Szabályozási tartomány(3), Múlt(4), 
Jövő(5) 
 
In this picture the essence and the advantage of the model predictive controllers can be 
seen. It means that using the model it becomes possible to predict the effect of the actual 
control signal in the future (in the prediction horizon) or to realize the set points in the 
future, how the control signal should be variated. MPC has the ability to reckon with the 
effect of the realized control signal (model horizon). The aim of the MPC is to minimize 
the error between the set points (w.) and the measured values (y.). It can be formulized 
in an objective function. To reduce the computing demand of solving the objective 
function, it is only solved on the control horizon, and this reducing is also necessary 
because the result of the objective function is a control signal trajectory, but just the first 
element of the the trajectory is realized. To get a contionous control signal the objective 
function is needed to be solved in every discrete moment. 
Formulating the aim of the method, an objective function is the result, which is: 

 ∑ ∑
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where w(k+j) means the set point value, y(k+j) means the predicted dependent value in 
the (k+j)th discrete time moment, Δu means the incremention of the control signal, λ is 
an weight parameter. 
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The black box model – Impulse response model 
The identification of the dynamic part of a block-oriented model is a challenging task. In 
practice, the identification of the parameters of the IRM (Impulse Response Model) may 
be troublesome due to the large number of them (Ricker, 1988).  

In this case the identification parameters can be obtained easily using ϕ variable 
which means: 
 )1()()( −−= iyiyiϕ  (8) 

where y(i) is the output of the process in the ith moment. With the help of ϕ the 
parameters of the discrete impulse response model (IRM) can be calculated easily:  
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where tΔ denotes the sampling time, i the ith discrete time-step, and N  is the model 
horizon. This results in a more parsimonious IRM model description, where the variance 
of the identification problem is decreased by the decrease of the number of the 
parameters to be estimated.  
 
The model based predictive controller 
The convolution model can be easily applied in model predictive control scheme. The 
control algorithm is based on the natural division of the system response into free and 
forced response terms (Abonyi et al. 2000): 
 ( ) ( ) ( )tkytkytky freeforcedm +++=+  (10) 

where the forced output, ( )tky forced + , depends only on the future inputs,  

 ( ) ( )∑
=

−+Δ=+
t

i
iforced itkusKtky

1
 (11) 

where { }is are the gain independent step response coefficients defined by ∑
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and ( )itku −+Δ  denotes the change on the control variable: 
( ) ( ) ( )1−−+−−+=−+Δ itkuitkuitku .  

As the previous equation suggests, the forced response is calculated by using a 
linear model, because the steady-state gain, K, is calculated at the kth time step, and is 
assumed to be constant during the prediction. In control engineering practice such one 
step linearization is commonly used for simplifying the highly computational-demanding 
optimisation task. The proposed method differs from these approaches in the calculation 
of the free response of the system that represents the effect of the previous control 
signals that can interpreted as the future response of the process assuming that the 
process input is constant during the prediction horizon, Hp.  Hence, convolution model is 
used to generate this free response, ( ) sifree yQiky +=+ , where the iQ coefficients are 
(Marchietti and Mellchamp, 1983): 
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The future incremental control actions, ( ) ( )[ ]TpHkwkww ++= ,,1 K , are obtained by 
minimising the following cost function: 
 ( )( ) 22min uyuS

u
Δ++Δ−=

Δ
λfreeKw  (13) 

where w is the set point vector ( ) ( )[ ]TpHkwkww ++= ,,1 K  denotes the future set-point 

values, ( ) ( )[ ]Tpfreefreefree Hkyky ++= ,,1 Ky  the predicted free-response, and S is the 
gain independent dynamic matrix: 
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The move suppression coefficient, λ, employs a punishment for the variation of the 
manipulated variable. For nonlinear processes this constant can be gain-scaled by 
expressing it as a product of a scaled move-suppression coefficient, γ , and the square of 

the process gain, 2K⋅= γλ (Shridhar, Cooper, 1997). 
If the process constraints are not taken into account, the previous minimisation problem 
can be solved effectively by least-squares method, 

 eSISS
K

u TT ⋅⋅⋅+⋅⋅=Δ −1)(1 γ  (15) 

where e is the vector of the estimated errors  e = r - yfree, and I is a unity matrix. 
The controller has three parameters. These are the prediction horizon, Hp, the 

control horizon, Hc, and the gain independent move suppression coefficient, γ. The 
prediction horizon should roughly be equal to the 60% of the open loop settling time to 
ensure controller stability. When the process in nonlinear, the open-loop settling time is 
changing with the operating point. According to this effect, the prediction horizon can be 
adapted during the operation. A simpler solution is setting the prediction horizon equal 
to the 60% of maximum of the settling time. In the application study of this paper we 
consider the linear model of the process, and we consider the move-suppression 
coefficient, γ = 4.7058*109. The value of the move suppression coefficient was obtained 
with a parameter sensitivity. 
 
MODEL PREDICTIVE CONTROL OF A SISO POLYMERIZATION PROCESS 
 
Model Identification 
For this study we generated input-output data with the white-box model, using sample 
time Ts = 0.03h. We identificated our black-box model by these data-sets. Our black box 
model is the impulse response model and the step response model, the integral of IRM. 

Because of the nonlinearity of the white box model, we have chosen a steady state 
point and we identified our black box model around this point (Figure 4). After 
identification the model was validated, because of the control of its’ reliability.  
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Figure 4 
 

Validation of the black box model 
 

 
 

4. ábra: Az identifikált konvolúciós modell validálása 
 
Idő (h)(1), Átlagos molekulatömeg (kg/kmol)(2) 
 
To use the black box model for desing a model predictive control the identificated black 
box model is needed to be validated. In this figure the validation can be seen. The blue 
line means the response of the black box model and the red line means the response of 
the first principle model for the same input signal. The two responses show some 
difference because of the nonlinearity of the first principle model, which is obviously has 
a different response than the linear black box. As the figure shows it can be stated that 
the linear model is appropriate for approximating the response of the non-linear linear 
model, so this linear model can be applied for design a MPC. 
 

RESULTS 
 
The tuning parameters were selected to obtain satisfactory set-point tracking. In this case 
setpoint changes mean grade change (determined by the certain values of the NAMW). 
We have studied a PI controller and a model predictive contoller, DMC. The control 
signal is between the range u = [0.0046, 0.05] m3/h in both cases. The PI controller was 
implemented to the white box model and, the tuning parameters of it has been obtained 
the following way: a first order plus dead time model was identificated and applying the 
parameters of  this model the tuning parameters of PI controller could be obtained with 
ITAE method. The controller tuned this with this method can provide a good result 
during the grade transitions, as it can be seen in the Figure 5. 

The task is to realize the chosen grade-transitions (’A’ product to ’B’ product in the 2nd 
hour and ’B’ product to ’C’ product in the 7th hour) with a wide-spread applied PI controller. 
The products can be charaterized with the number average molecular weight (NAMW 
(kg/kmol)). To control the NAMW the initiator flow rate (the control signal) is varied. The 

(1) 

(2
) 
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maximum value of the control signal is 0.05 m3/h, the minimum value is 0.0046 m3/h. The 
grade transitions last approximately an hour, and to qualify these transitions the ISE (Integral 
Square of Error) can be calculated. The result is ISE = 3.8418*107. ISE becomes possible to 
compare the PI controller to the MPC. 
 
Figure 5 
 

Simulation with PI controller 
 

 
 
5. ábra: A PI szabályozóval elvégzett szimuláció eredménye 
 
Idő (h)(1), Átlagos molekulatömeg (kg/kmol)(2), Iniciátor térfogatáram (m3/h)(3) 
 
The PI parameters: K = -6.78*10-6 TI = 0.225 h, which can ensure a good kind of 
controlling. So the new set point (from 25000 kg/kmol to 27500 kg/kmol) is obtained in 
1 hour, with a overshoot with approximately ¼ decay ratio, and an other set point change 
in 7th hour, and the new set point is obtained in an hours.(green line is the set point 
signal, blue is the measured signal(NAWM) in both cases). So the length of the grade 
transition time can be seen a little bit long, so finding a method is neccessary to reduce 
the grade transition time, or finding a control algorithm which can provide producing 
less off-grade product. 

The model predictive controller provides very different kind of controlling due to 
the lack of the overshoot. The set point is the same like in the case of PI controller, 
because of the comperableness. 

The tuning parameters of DMC, is the lenght of the prediction horizon, control 
horizon, and the value of the λ parameter, and it is also important to define the lenght of 
model horizon. The model horizon is N = 30, which was obtained by using the impulse 
response model (IRM) of process. The prediction horizon is selected to be p = 5 because 
increascing the prediction horizon the quality of controlling is getting worse. The control 

(1) 

(2
) 

(3
) 
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horizon is selected to be c = 4, because when the length of the control horizon converges 
the value of the prediction horizon the controller becomes more aggressive (Figure 6). 
 
Figure 6 
 

Simulation with DMC controller. 
 

 
 
6. ábra: A DMC szabályozóval végzett szimuláció eredménye 
 
Idő (h)(1), Átlagos molekulatömeg (kg/kmol)(2), Iniciátor térfogatáram (m3/h)(3) 
 
The task is the same as the simulation with the PI controller. The operating conditions are 
also the same. Compare this figure to the previous figure it can be stated that the DMC is 
faster in the first grade transtion (’A’ to ’B’), approximately 0.5 hour. The second grade 
transition (’B’ to ’C’) takes the same time (1 hour).  The advantage of the DMC can be 
observed when the value of the ISE has been calculated (ISE = 2.5773*107). 

The behavior of DMC controller is definitely different to the PI controller, but the 
DMC can be a little bit faster than the PI controller and has no oveshoot.  

Examining only the figures the advantage of any controller is very difficult to state. 
The error of the PI controller (calculated by ISE method) was 3.8418*107, but the DMC 
controller can afford 2.5773*107 error. So the advantage of DMC can be stated. Tuning 
these two controllers more agressively would result additional ostillations, and lenghten 
the time it takes for them to keep the number average of molecular weight in in accurate 
value, so a compromise is needed to be made in tuning the controllers for servo-mode. 
 

CONCLUSION 
 
In the chemical industry the importance of the polymerization processes is increasing. 
To develop these processes the length of the grade transitions are needed to reduce, 
because this way it becomes possible to avoid to produce off-grade products. To reach 
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this demand a MPC algorithm was used to handle the grade transitions. In this work a PI 
and a MPC controller were compared each other. First we use the first-principle model 
of a polymerization process, and using this the black box model was identified. Using 
the impulse response and the step response model of the reactor, the DMC could be build 
for this reactor. It is seen that the performance of the model predictive controller is 
better, than the performance of PI algorithm. It is also proved by the ISE criteria. The 
applicability of applying the model predicitve controllers in the local control level is 
confirmed also by the ISE criteria and the visual comparison. The actuality of handling 
the control problem as an optimization problem is very high. Generally, it is very 
important to find the best fitting contoller algorithm to realize the objecive function. In a 
lot of cases the advantage of MPC algorithms fits better to these objective function, but 
they have a huge disadvantage: in most cases it is necessary to use linear model 
approaches which are very sensitive for the identified parameters, and in nonlinear 
systems these parameters can change different kind of methods are available. The non-
linear model predictive controllers can handle this problem, or adaptive algorithms are 
able to solve them. Regarding to the the increasing spread of MPC controllers, because 
of the rising industrial demand, it would be useful to develop the nonliner model 
predictive controllers, because of the hope of better performance of the whole operating 
range. 
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