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ABSTRACT 

 
Nonlinear black-box models have become more and more important not only in research but 
also in industrial practice. However, their main disadvantage is that they are often too 
complex and not interpretable; therefore it is a hard and complex task to validate them by 
human experts. It is a challenge how a priori knowledge can be utilized and integrated into 
the black-box modeling approach. This could be a difficult multi-stage process. One of these 
steps can be the reduction of the identified model. It is also important from the viewpoint of 
overparameterization and to reduce the time and computational demand of the model. This 
article would like to show how model reduction techniques can be used for complexity 
reduction purposes by local models from neural networks. A possible method family is 
orthogonal techniques. These methods can roughly be divided into two groups: the rank 
revealing ones like SVD-QR algorithm and those that evaluate the individual contribution of 
the rule or local models, like the orthogonal least-squares approach (OLS). This later 
technique requires more computations, but for system identification purposes it is preferable 
as it gives a better approximation result. Apart from that, other methods can also be used to 
reduce the number of local models: the most similar models can be merged together. The 
analyzed methods are used for knowledge discovery purposes from neural networks.  
(Keywords: model reduction, model transformation, knowledge discovery.) 
 

ÖSSZEFOGLALÁS 
 

Neurális hálózatok értelmezhetősége és annak javítása 
Kenesei T., Feil B., Abonyi J. 

Pannon Egyetem, Folyamatmérnöki Intézeti Tanszék, Postafiók 158, 8201, Veszprém 
 
A nemlineáris fekete doboz modellezési technikák napjainkra különösen fontossá váltak 
nemcsak a tudományos kutatás, hanem az ipari alkalmazás területén is. Fekete doboz 
modellek lévén legnagyobb hátrányuk, hogy struktúrájuk, illetve paramétereik nem 
értelmezhetők. Ennek köszönhetően e modellek optimális struktúrájának meghatározása és 
validálása rendkívül nehéz. Szintén e fekete doboz jelleg miatt jelent nagy kihívást, hogy 
miként lehet a modellalkotás során előzetes információk felhasználásával javítani a 
modellezési teljesítményt. A fekete doboz modellek struktúrájának meghatározása tehát 
többlépcsős folyamat, mely általában egy komplex modell redukálásán alapul. A modell 
redukció a túlparaméterezés elkerülése miatt kiemelt fontosságú, továbbá használatával 
számítási idő nyerhető. Cikkünkben azt kívánjuk megmutatni, hogy redukciós technikák 
segítségével milyen módon lehetséges a fekete doboz modellek komplexitásának csökkentése. 
Az egyik lehetséges út az ortogonális technikák használata, melyek két további csoportba 
oszthatók: az ortogonális legkisebb négyzetek módszere (OLS), illetve a rangsoroló SVD-QR 
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technikák. Az OLS sokkal számításigényesebb, de  jó közelítést adó eredményei miatt preferált 
az identifikációs technikák használata során. A cikk egy, a neurális hálózatok értelmezhetővé 
tételére alkalmas eljárást mutat be, továbbá ismerteti az így kapott szabálybázis redukálását 
OLS segítségével. A bemutatásra kerülő eredmények a kidolgozott neurális hálózat részletes 
analízisére és redukciójára alkalmas technika széleskörű alkalmazhatóságát vetítik előre. 
(Kulcsszavak: modell redukció, modell transzformáció, tudásfeltárás.) 
 

INTRODUCTION 
 
Nonlinear black-box models have become more and more important not only in research 
but also in industrial practice. One of the most often used types of black-box models is 
neural networks (NN). This type of nonlinear models can be used effectively for many 
purposes including business decision systems (Setiono, 2000), engineering and data 
mining (Nelles, 2001). It consists of simple but strongly connected units called neurons; 
and generally robust against the failure of single units. Neural networks can be 
feedforward or recurrent depending on the type of connections. In this paper only 
feedforward neural networks will be studied. In this type of network the neurons are 
organized into layers (input, hidden and output layers) as can be seen in Figure 1; and 
there are only connections between neurons in one layer to the following. Cybenko 
showed that any mapping from nℜ  to qℜ  could be achieved with two layers of hidden 
nodes, hence neural networks are universal approximators. Hornik showed that any 
mapping could also be achieved with an arbitrary degree of accuracy using only one 
hidden layer. The complexity of the network (number of parameters) depends on the 
number of hidden neurons, since the number input and output neurons are equal to the 
input and output of the system to be modeled, respectively. Based on these results NNs 
with one hidden layer will be used in the following.  
 
Figure 1 
 

Multilayer neural network  
 

 
Source (Forrás): (Benitez, 1997) 

 
1. ábra: Többrétegű neurális hálózat 
 
Bemeneti réteg(1), Rejtett réteg(2), Kimeneti réteg(3) 

(1) (2) (3) 



Acta Agr. Kapos. Vol 11 No 2 

 261

However, the main disadvantage of NNs is that they are often too complex and not 
interpretable. Complexity and interpretability issues are connected with each other: often 
a relatively simple cross validation method can be used to determine the proper number 
of hidden neurons but several problems still remain. As Duch (2003) showed  a simple 
performance measure (mean square error by function approximation, ratio of wrongly 
classified samples by classification) is not enough by itself because two NNs with the 
same performance can have highly different behavior. Other problem is how a priori 
knowledge can be utilized and integrated into the black-box modeling approach, and 
how a human expert can validate the identified NNs or more favorably, follow the 
identification process to interfere in it if it is needed (e.g. to avoid overparameterization 
or overlook the possible soft or crisp constrains).  
To overcome these problems, there are some strategies in the literature: 
1. Visualization of neural network behavior. This approach utilizes the natural pattern 

recognition capability of human expert. It aims to draw a two dimensional map that is 
in connection with the behavior of NN in a specific way. 

2. Transformation of NN. The aim of this type of methods is to convert NN into a more 
interpretable form. Because NN is a black-box, other black-box models should be used 
that are closer to human thinking. A good approach is to extract rules from NN functions 
and parameters, and represent them as fuzzy (linguistically sound) if-then rules. 

3. Model reduction. This approach does not aim to give a ‘picture’ of NN responses for 
specific inputs and behavior, but overcome complexity problems with the 
determination of ‘importance’ of hidden neurons and weights, remove the 
insignificant ones, and/or merge the similar ones. It is also important from the 
viewpoint of overparameterization and to reduce the time and computational demand 
of the model. Naturally, it can be combined with the above mentioned approaches.  

The Related works section gives a brief introduction and overview about these methods. 
The Complexity reduction subsection contains a combined approach used in this paper to 
get reduced rule based model from NN, and gives viewpoints for future work. 
Application examples and discussion section describes some illustrative examples, while 
the Summary section concludes the paper. 
 

 
RELATED WORKS 

 
Structure of neural networks 
This subsection gives a brief introduction how NNs work. This description is mainly 
based on Benitez (1997); for a detailed discussion see Nelles (2001). Let us consider the 
NN in Figure 1. It has n input (x1,…,xn), h hidden (z1,…,zh), and m output (y1,…,ym) 
neurons. Let τj be the bias for neuron zj. Let wij be the weight of the connection from 
neuron xi to neuron zj, and βjk the weight of the connection from neuron zj to neuron yk. 
The mn ℜ→ℜ  function the net calculates is F(x1,…,xn) = (y1,…,ym) where  
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Where gA and are activation functions. In several applications the output activation 
functions are linear ones, and the usual choice for the hidden activation function is the 
logistic function: fA(x)=1/(1+e-x) (Figure 2). 
 
Figure 2 
 

Logistic function 
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2. ábra: Logisztikus függvény  
 
NN visualization methods 
The output of the hidden neurons zj can be seen as an h dimensional vector that 
represents the range the neurons work in. If a ‘hidden variable’ zj is close to zero or one, 
the neuron is saturated (Figure 2). If a hidden neuron gives values near zero or one for 
almost all inputs, hence it does not fire or fires all the time, it is useless for the problem. 
The distribution of these h dimensional data can represent the NN behavior for a human 
expert. Unfortunately, in several cases there is a need for more than two or three hidden 
neurons. In these cases a projection or dimensionality reduction technique has to be 
used. Principal Component Analysis (PCA) is a linear technique; therefore the 
information loss may be more than the admissible level. Other (topology or distance 
preserving) projection techniques like Multidimensional Scaling, Sammon method, 
Isomap or Locally Linear Embedding can be used for that purpose. For more details see 
Abonyi (2007) and the references within. 

However, there are some special visualization methods for NNs. Duch (2003) 
proposed an approach for visualization of NNs applied on classification problems. His 
method can be applied for problems with K classes if the output is coded as a K length 
vector: (1,0,…,0) means the first class, (1,0,…,0) the second and so on. In this case the 
classes are represented by the corners of the K dimensional unit hypercube. The 
approach proposed by Duch maps the NN output into two dimensions, basically 
‘flattens’ the hypercube into two dimensions. This approach was thought over and 
applied on the output of the hidden neurons zj in Duch (2004a, 2004b). This method was 
straightforward from the former one because the hidden variables (the activation 
functions) take values from [0,1], therefore the h dimensional vectors are located within 
the unit hypercube. This method can be used not only for classification but also for 
function approximation purposes as well. Based on this latter approach a picture of the 
behavior of the hidden units, their firing strength and activation or saturation level can be 
obtained. The main drawback is that the number of classes/hidden neurons is limited. To 
keep the figures simple and interpretable, only 3…6 variables can be used.  
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Interpretation of NNs 
Another strategy for ‘opening’ a NN is to convert it into a rule based model. These 
‘linguistically sound’ rules are often fuzzy if-then rules, and are close to human thinking: 
IF a set of conditions is satisfied, THEN a set of consequences is inferred. Fuzzy logic 
provides a tool to process uncertainty, hence fuzzy rules represents knowledge using 
linguistic labels instead of numeric values, thus, they are more understandable for 
humans and may be easily interpret (Benitez, 1997). If NNs can be transformed into 
rules, then it makes possible to overlook and validate the trained NN, and build in a 
priori knowledge to the network. The crucial question is what the connection is between 
the several types of neural networks and fuzzy rule based systems.  

Under some conditions, the equivalence of normalized radial basis function 
networks (RBF) and Takagi-Sugeno fuzzy models can be obtained (Nelles, 2001). 
However, in this paper multilayer perceptron (MLP) type neural networks with logistic 
hidden activation function (see Structure of neural networks subsection) are dealt with 
(in the following the notation NN will be used for MLP type networks). An approach for 
NNs with tanh activation function is presented in Setiono (2000) for function 
approximation purposes, but it should be noted that it is an approximation: the rule based 
model is not identical to the original trained NN, therefore information transfer in the 
‘opposite’ direction, i.e. from the rule base to the NN can be problematic. An interesting 
result was given by Benitez (1997) who proved the equality of NNs with logistic 
activation function and a certain type of fuzzy rule based model called fuzzy additive 
system (FAS). For that purpose, a new fuzzy logic operator had to be introduced. 
Because of the equality (which is stronger than equivalence), if a method can be applied 
on a FAS for a certain purpose (e.g. rule base reduction), then it is also applicable to the 
NN as well and vice versa. In the following, this equality relation is discussed based on 
Benitez (1997). 
FAS employs rules in the following form: 

 Rjk: If x1 is 1
jkA  and … and xn is n

jkA  then yk is pjk(x1,…,xn) (3) 

where pjk(x1,…,xn) is a linear function on the inputs. In FAS’s, the inference engine 
works as follows: for each rule, the fuzzified inputs are matched against the 
corresponding antecedents in the premises giving the rule’s firing strength. It is obtained 
as the t-norm (usually the minimum operator) of the membership degrees on the rule if-
part. The overall value for output yk is calculated as the weighted sum of relevant rule 
outputs. Let us suppose multi-intput single-output fuzzy rules, having lk of them for k th 
output. Then yk is computed as 

 ∑
=

⋅=
kl

j
njkjkk xxpvy

1
1 ),...,(  (4) 

where νjk is the firing strength of j th rule for k th output.  
To decompose the multivariate logistic function to form the rule antecedents in the 

form of (3) with univariate membership functions, a special logic operator has to be used 
instead of and: interactive-or or i-or: 
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To get a clearer idea of i-or behavior, see Figure 3, which represents the surface defined 
by the i-or operator. Using this * operator, the interpretation of NNs whose hidden 
neurons have biases as follows. It can be checked that 
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Based on that, the fuzzy rules extracted from the trained NN are: 
 jkR : If x1 is 

1
jkA  *…* xn is n

jkA  then yk=βjk (8) 

 
Figure 3. 
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3. ábra: Az i-or operátor 
 
An interesting and useful application possibility is to initialize the NN on the basis of a 
priori knowledge. Initialization is a crucial question by NNs because there are often a 
huge number of parameters and the cost function has numerous local minima. The most 
often applied local (gradient based) search techniques may trap in a local minimum. To 
avoid that problem, a possible approach is multi-start method, i.e. to train the NN from 
several different (random) initial points. Other solution can be based on evolutionary 
algorithms, see e.g. Castro (1998). The flexibility of evolutionary algorithms makes 
possible the direct rule extraction from trained NNs (however, only crisp rules and by 
classification problems) as Markowska-Kaczmar (2003) shows. However, all of these 
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latter methods have high computational demand. The initialization using prior 
knowledge based if-then rules has other advantage as well: it combines the user’s 
experience with the learning capability of NN. 
 
Complexity reduction 
In this subsection we focus on the combination of existing model reduction techniques 
with the previously presented rule based model extraction method. It is a wide research 
area, the interested reader can refer Setnes (2001) and the citations within. In general it 
can be stated that linear model reduction methods are preferred to nonlinear ones 
because they are exhaustively studied and effectively applied for several types of 
problems (e.g. in controller assessment recently in Harris (2007)). For that purpose the 
model should be linear in parameters.  

A possible method family is orthogonal techniques. These methods can roughly be 
divided into two groups: the rank revealing ones like SVD-QR algorithm and those that 
evaluate the individual contribution of the rule or local models, like the orthogonal least-
squares approach (OLS). This later technique requires more computations, but for 
system identification purposes it is preferable as it gives a better approximation result. In 
the remaining part of this paper OLS is applied for rule ranking and model reduction 
purposes. OLS works as follows (for a throughout discussion see Nelles (2001)). 
Consider a general linear in parameters model: 
 y=Zθ+e (9) 
where y=[y1,…,yn]T is the measured output, Z=[z1,…,zn]T is the regressor matrix 
(zi=[zi1,…,ziN]T, i=1,…,h are the regressors), θ=[θ1,…,θh] is the parameter vector and 
e=[e1,…,eN]T  is the prediction error. OLS transforms the columns of the regressor matrix 
Z into a set of orthogonal basis vectors in order to inspect the individual contribution of 
each regressor. If they were not orthogonal, they could not been inspected individually. 
An orthogonalization method should be used to perform the orthogonal decomposition 
Z=VR (often the simple Gram-Schmidt method is used), where V is an orthogonal 
matrix such that VTV=I, and R is an upper triangular matrix with unity diagonal 
elements. Substituting Z= into (9), we get y=VRθ+e=Vg+e where g=Rθ. Since the 
columns vi of V are orthogonal, the sum of squares of yk can be written as 

 ∑
=

+=
h

i

T
i

T
ii

T g
1

2 eevvyy . (10) 

The part of the output variance yTy/N explained by regressors is Ng
h

i
i

T
ii /

1

2∑
=

vv , and an 

error reduction ratio due to an individual regressor i can be defined as  

 
yy
vv

T
i

T
ii

i
g

err
2

= , i = 1,…,h (11) 

This ratio offers a simple means of ordering the regressors. As Nelles (2001) shows, “there 
are only two restrictions to the application of this subset selection technique. First, the 
model has to be linear in parameters. Second, the set of regressors from which the 
significant ones will be chosen must be precomputed.” This later one is an important 
restriction because it means that all regressors are fixed during this procedure. By 
normalized RBF networks and Takagi-Sugeno fuzzy models (see Interpretation of NNs 
subsection) this requirement is not met, therefore the original version of OLS cannot be 
applied. It is because the normalization denominator changes as the number of selected 
rules changes, thus the fuzzy basis functions (here: regressors) change. To overcome this 
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problem the value of the denominator can be fixed, but in this case interpretability issues 
are discarded completely. However, OLS can be very useful for various purposes; 
modified versions of OLS can also be applied to determine the centers of radial basis 
functions (Huang, 2005), or to generate Takagi-Sugeno-Kang fuzzy models 
(Mastorocostas, 2001, 2003). 

In case of MLP networks and FAS systems, this problem does not occur because of 
the special output computing mechanism (4). Thus classical OLS can be applied on FAS 
systems to rank the rules since the parameters of the trained NN are fixed. However, 
OLS is formulated as a MISO technique. If the NN has more than one output, then the 
outputs can be evaluated individually one by one. In this case (using the notation of OLS 
(9-11)), y is the k th network output, the regressors zi are the outputs of the hidden 
neurons, and the parameters θj corresponds to the weights from the j th hidden neuron to 
the k th output neuron βjk (see also (1)). This approach was directly applied on NNs in 
Henrique (2000), and it was shown that analog method can be applied to the subset 
selection of the original network inputs. In this case in (9-11), y is the output of the k th 
hidden neuron, the regressors zi are the inputs of the network, and the parameters θj 
corresponds to the weights from the j th input neuron to the k th hidden neuron wjk (see 
also (2)). Other NN pruning can also be considered, e.g. optimal brain damage (Cun, 
1990) or optimal brain surgeon (Hassibi, 1992), and it should be emphasized that these 
methods can directly be applied on FAS systems as well. The application examples in 
the next section show that it can be very effective if a model reduction technique (in this 
paper OLS for ranking the rules) and rule base extraction from NN are applied together, 
and validate the identified models by human experts.  

It should be noted that the applied i-or operator in the extracted fuzzy rules does not 
belong to the commonly applied fuzzy t-norms or t-conorms. However, it would be 
interesting to test the extracted fuzzy rules with common fuzzy logic operators, and 
maybe recompute the output weights (which can easily be done because the model is 
linear with respect to these parameters). Our presumption is that the crisper the 
activation functions are ( fA), the less the difference is between the modeling 
performances of the original and the modified FAS’s that uses classical fuzzy logic 
operators. For that purpose, numerous tests have to be completed in the future. If this 
guess proves true, then the cost function of the NN during training can be modified to 
get ‘crisper’ activation functions.  
 

APPLICATION EXAMPLES AND DISCUSSION 
 
Benchmark datasets are extremely helpful to consider the possibilities of the presented 
reduction and transformation techniques. We used a dataset of a pH process, where the 
concentration of hydrogen ions in a continuous stirred tank reactor is modeled (CSTR). 
This well-known modeling problem presents difficulties due to the nonlinearity of the 
process dynamics. This process can be correctly modeled as a first-order input-
output(NARX) system, where the actual output (the pH) y(k +1), depends on pH of the 
reactor y(k) and the NaOH feed u(k) at the kth sample time (sample time is ts=0.2 min): 
 ))(),(()1( kukyfky =+ . (12) 

For detailed information of the process see Abonyi (2003). 
Parameters of the neural network were identified by the back-propagation 

algorithm based on a uniformly distributed training data where FNaOH is in the range of 
515-525 l/min. Experiences pointed on, that for good model performance 7 neurons are 
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sufficient in the hidden layer of the neural network. The results in Table 1 shows, that 
the neural network models give very good prediction performance for this process. 
 
Table 1. 
 

Modeling and testing errors (one-step ahead prediction) 
 

Testcase (number of neurons in hidden 
layer/number of removed neurons) (1) 

Training errors 
(MSE) (2) 

Testing 
Errors (MSE) (3) 

Neural Network (7) (4) 3.088e-005 3.267e-005 
Using i-or (7) (5) 3.053e-005 3.259e-005 
Network reduction (8/1 neuron) (6) 4.434e-005 4.285e-005 
Network reduction (7/1 neuron) (7) 3.060e-005 3.247e-005 
Network reduction (6/2 neuron) (8) 2.884e-004 3.690e-004 
Network reduction (6/1 neuron) (9) 1.086e-004 1.316e-004 

 
1. táblázat: Modellezési és validálása hibák egylépéses predikcióra 
 
Teszteset (neuronok száma a rejtett rétegben/eltávolított neuronok száma)(1), Hiba a 
tanítási eseteken (MSE - Átlagos Négyzetes Hiba)(2), Hiba a tesztelési eseteken (MSE - 
Átlagos Négyzetes Hiba)(3) Neurális hálózat(4), I-or operátor használata(5), Neurális 
hálózat redukció(8/1 neuron)(6), Neurális hálózat redukció(7/1 neuron)(7), Neurális 
hálózat redukció(6/2 neuron)(8), Neurális hálózat redukció(6/1 neuron)(9) 
 
However the deviation between training and testing prediction errors of the original 
neural network model reveals that the model is a bit overparameterized (there are too 
many neurons in the hidden layer of the network) and the test error of the models could 
be lowered by model reduction. 
 
Figure 4 
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4. ábra: Egyváltozós dekomponált tagsági függvények 



Kenesei et al.: Complexity Reduction of Local Linear Models - Extracted from Neural Networks 

 268

Applying the described transformation technique, Figure 4 shows the decomposed 
univariate membership functions. Since the neural network model of the pH process 
contains seven neurons in the hidden layer of the model the transformed FAS consists of 
seven fuzzy rules according to equation (6). The neurons are listed according to the OLS 
ranking (see equation (13)), starting with the rules decomposed from the most important 
neuron in the hidden layer of the network. For better interpretability the histogram of the 
corresponding model inputs are illustrated on the last two subplots. Results in the first 
two rows of Table 1 show that the transformed fuzzy rulebase using i -or is identical 
with the original neural network as expected, because the modeling errors are almost the 
same both for testing and training results. However a small difference between the 
training and testing errors exists, which is due to the re-identification of parameters for 
the output layer after applying i-or. There is a small decrease in modeling errors with the 
re-identification. In the last four rows of Table 1, the numbers in parenthesis are the 
number of the neurons used in the hidden layer of the neural network model In 
parenthesis the second number means the number of the reeducated (removed) neurons if 
there is any. 

As it was mentioned, ordering the neurons by OLS estimated error reduction ratios 
reveals the unnecessary neurons (the importance of the extracted rules) in the hidden 
layer, because neurons with low error reduction ratio are insignificant for the appropriate 
model. In the meaining of the FAS equivalent of the neural network the OLS ranking 
means a reduction based on the consequent of the fuzzy rule. It is also possible to reduce 
the FAS rule base by analyzing the antecedent part of the rules using a similarity 
measure for the membership functions. Utilizing the equality of FAS and NN, the 
following classical interclass separability measure (originally for fuzzy systems) could 
be used to compare the  univariate functions  decomposed from hidden neurons: 

 

ii
i

kli
i

kj

ii
i

kli
i

kj
klj

i

dxxAxA

dxxAxA
S

∫
∫

=
))(),(max(

))(),(min(

,,

,,
,,

, ni ,...,1= ; hlj ,...,1, =  (13) 

According to (13) the similaritiy measure to compare the hidden neurons with 
multivariate activation functions can be defined: 
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The similarity results of the neurons are illustrated in Table 2. The achieved similarity 
measures correspond to the membership functions depicted on Figure 4, consequently 
the 7th and the 2th neurons are the most similar. 

Figure 5 illustrates the neurons ordering by their effect on the modeling error. This 
ordering is also indicated on Figure 4, so the most important rules are on the top of the 
picture. The consequence of synthesizing the results is that it is possible to remove one 
neuron out of 7 (in FAS the corresponding rules) from the model without a significant 
increase in modeling performance, because of the low error reduction rate of the last, 7th 
neuron. This achievement harmonizes with the issues of Table 2, because the interclass 
separability identifies the 2nd and the 7th neuron as similar, but OLS indicates the 2nd one 
as more important. 

As Table 1 shows that model reduction techniques like OLS makes it possible to 
overcome the problem of overfitting and the performance of the reduced model is almost 
the same as the original one. A rigorous test of NARX models is free run simulation 
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because the errors can be cumulated. The following result indicates the goodness of the 
reduced model even by free run simulation: 
- 3.508e-003 for neural network with 7 neurons; 
- 3.828e-003 using i-or for FAS with 7 rules; 
- 3.824e-003 after removing 1 neuron from the hidden layer containing 7 neurons. 
 
Table 2. 
 

Interclass separabilities for the neurons in the hidden layer 
 
Neurons (1) 1 2 3 4 5 6 7 

1 1.00 0. 44 0. 67 0. 53 0. 35 0.44 0.39 
2  1.00 0. 32 0. 26 0. 40 0.20 0.75 
3   1.00 0. 47 0.36 0.63 0.30 
4    1.00 0.20 0.43 0.21 
5     1.00 0.26 0.49 
6      1.00 0.19 
7       1.00 

 
2. Táblázat: Hasonlósági értékek az egyes neuronok között 
 
Neuronok száma a rejtett rétegben (1) 
 
Figure 5  
 

Error reduction ratios 
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5. ábra: Hibaredukciós arány 
 
Az egyes neuronokhoz rendelhető hibaredukciós arányok(1), Rejtett rétegbeli neuronok(2) 
 
After transforming the network into a FAS, it is also possible to use similarity measures 
which can be used to reduce further the rule base. It can be done in an automatic way if a 

(2) 

(1
) 
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threshold value is defined previously. If the measured similarity is greater than the 
threshold, the corresponding two neurons in the original neural network can be 
considered as identical; therefore further reduction of the FAS rule base is possible. This 
technique can be used even in the learning process of the neural network.  

 
SUMMARY 

 
This article gave brief summary of visualization of the neural networks, and discussed 
that neural network with logistic function fA(x)=1/(1+e-x) is identical to fuzzy additive 
systems. The neural networks are often too complex (overtrained) and not interpretable, 
therefore it is very difficult to utilize these networks correctly. A possible solution is to 
visualize and/or reduce these models. 

The article showed how model reduction techniques can be used by neural 
networks. For that purpose an orthogonal technique, the orthogonal least-squares 
approach (OLS) was used. It was shown that after transforming the network into an 
equivalent fuzzy additive system it is possible to reduce the network by analyzing the 
antecedent part of the fuzzy rules. 

A possible future research area is to develop a new learning procedure for neural 
networks using prior knowledge based if-then rules, which combines the user’s 
experience and/or constraints with the learning capability of NN. The extracted fuzzy 
rules are planned to be tested with common fuzzy logic operators to confirm our 
presumption that the crisper the activation functions are (fA), the less the difference is 
between the modeling performances of the original and the modified FAS’s that uses 
classical fuzzy logic operators. 
 

ACKNOWLEDGMENT 
 
The authors would like to acknowledge the support of the Cooperative Research Centre 
(VIKKK, project III/1) and Hungarian Research Found (OTKA T049534). János Abonyi 
is grateful for the support of the Bolyai Research Fellowship of the Hungarian Academy 
of Sciences and the Öveges Fellowship. 
 

REFERENCES 
 
J. Abonyi, B. Feil (2007). Aggregation and Visualization of Fuzzy Clusters based on 

Fuzzy Similarity Measures. Advances in Fuzzy Clustering and its Applications, 
John Wiley & Sons, 95-123. 

J. Abonyi (2003). Fuzzy Models of Dynamical Systems. Fuzzy Model Idetiftcation for 
Control, Birkhauser, 60-61. 

J.M. Benitez, J.L. Castro, I. Requena (1997). Are artifical neural networks black boxes? 
IEEE Transactions on Neural Networks, 8. 5. 1156-1164. 

L.N. de Castro, E.M. Iyoda, F.J.V. Zuben, R. Gudwin (1998). Feedforward Neural 
Network Initialization: an Evolutionary Approach. Proceedings of the 5th Brazilian 
Symposium on Neural Networks, 43-49.  

Y.L. Cun, J. Denker, S. Solla (1990). Optimal brain damage. Advances in neural 
information processing systems, 2. 598-605. 

W. Duch (2003). Coloring black boxes: visualization of neural network decisions. Int. 
Joint Conf. on Neural Networks, Portland, Oregon, IEEE Press, 1. 1735-1740. 



Acta Agr. Kapos. Vol 11 No 2 

 271

W. Duch (2004). Visualization of Hidden Node Activity in Neural Networks: I. 
Visualization Methods. Lecture Notes in Artificial Intelligence, 3070.38-43 

W. Duch (2004). Visualization of hidden node activity in neural networks: II. 
Application to RBF networks. Lecture Notes in Artificial Intelligence, 3070. 44-49. 

T.J. Harris, W. Yu (2007). Controller assessment for a class of non-linear systems. 
Journal of Process Control, in press. 

B. Hassibi, D. Stork, G. Wolff (1992). Optimal brain surgeon and general network 
pruning. Technical Report 9235, RICOH California Research Center, Menlo Park, CA. 

H.M. Henrique, E.L. Lima, D.E. Seborg (2000). Model structure determination in neural 
network models. Chemical Engineering Science, 55. 5457-5469. 

D.S. Huang, W.B. Zhao (2005). Determining the centers of radial basis probabilistic 
neural networks by recursive orthogonal least square algorithms, Applied 
Mathematics and Computation, 162. 461–473. 

U. Markowska-Kaczmar, M. Chumieja (2003). Opening neural network black box by 
evolutionary approach. Design and application of hybrid intelligent systems, 147-156.  

P.A. Mastorocostas, J.B. Theocharis, V.S. Petridis (2001). A constrained orthogonal 
least-squares method for generating TSK fuzzy models: Application to short-term 
load forecasting. Fuzzy Sets and Systems, 118. 215-233. 

P.A. Mastorocostas, J.B. Theocharis (2003). An orthogonal least-squares method for 
recurrent fuzzy-neural modeling. Fuzzy Sets and Systems, 140. 285-300. 

O. Nelles. (2001) Nonlinear system identification. Springer-Verlag. 
R. Setiono, W.K. Leow, J.Y.L. Thong (2000). Opening the neural network black box: an 

algorithm for extracting rules from function approximating artificial neural 
networks. Proceedings of the 21st International Conference on Information systems, 
Queensland, Australia, 176-186. 

M. Setnes (2001). Complexity reduction in fuzzy systems. PhD Thesis, TU Delft. 
 
 
 
Corresponding author (Levelezési cím): 
 

János Abonyi 
University of Pannonia, Department of Process Engineering 
H-8201 Veszprém, P.O.Box 158 
Pannon Egyetem, Folyamatmérnöki Intézeti Tanszék 
8201 Veszprém, Pf. 158 
Tel.: 36-88-624-209, Fax: 36-88-624-171 
e-mail: abonyij@fmt.uni-pannon.hu 


