

Acta Agraria Kaposváriensis (2006) Vol 10 No 1, 195-206
Kaposvári Egyetem, Állattudományi Kar, Kaposvár
University of Kaposvár, Faculty of Animal Science, Kaposvár

Intelligent dynamic load balancer

for JBoss application server

P. Mileff, K. Nehéz
University of Miskolc, Production Information Engineering Research Team (PIERT) of the Hungarian Academy of Sciences,

Department of Information Engineering, H-3515 Miskolc Egyetemváros

ABSTRACT

The growth of Internet services during the past few years has increased the demand for
scalable distributed computing systems. E-commerce systems concurrently serve many
clients that transmit a large, number of requests. An increasingly popular and cost effective
technique to improve server performance is load balancing, where hardware and/or software
mechanisms decide which server will execute each client request. Load balancing
mechanisms distribute client workload equally among server nodes to improve overall
system responsiveness. Load balancers have emerged as a powerful new technology to solve
this. This paper focuses on a new generation of adaptive/intelligent dynamic load balancing
technique, which based on the J2EE technology and can be practical in J2EE application
servers. The paper discusses in detail both the theoretical model of the load balancing and its
practical realization. The effectiveness of the new balancing method will be demonstrated
through exact measurement results compared with former traditional non-adaptive methods.
(Keywords: Distributed systems, Adaptive Load Balancing, J2EE Application server, JBoss)

ÖSSZEFOGLALÁS

Intelligens dinamikus terhelés elosztó JBoss alkalmazás szerverek számára
Mileff P., Nehéz K

Miskolci Egyetem, Magyar Tudományos Akadémia Termelés Informatikai Kutatóhelye (PIERT),
Alkalmazott Informatikai Tanszék, H-3515 Miskolc Egyetemváros

Az Internet nyújtotta lehetőségek nagy arányú növekedésével az elmúlt években rohamosan
megnőtt az igény a széles körben skálázható, elosztott számítási rendszerek iránt. A mai E-
commerce rendszerek jellemző tulajdonsága, hogy párhuzamosan egyszerre több kliens
nagyszámú kérését szolgálják ki. A szerver teljesítmények maximálására napjainkban egyre
növekvő népszerűségnek örvend az a költségkímélő, úgynevezett load balancing (terhelés
elosztó) technika, amely során különböző hardver és (vagy) szoftver módszerek döntenek arról,
hogy melyik szerver szolgálja ki éppen az adott kliens kérését. A technika egyenletesen elosztja
a kliensek kéréseit az egyes szerver node-ok között növelve a teljes rendszer hatékonyságát. A
terhelés elosztók, mint egy erőteljes, új módszertan jelennek meg ezen problémák megoldására.
A cikk egy új generációs adaptív/intelligens, dinamikus terhelés elosztó technikát mutat be,
amely J2EE technológiai alapokra épül, és alkalmazása rendkívüli előnyöket jelent J2EE
alkalmazásszerverek esetén. Részletesen bemutatásra kerül a terhelés elosztás technikájának
mind az elméleti modellje, mind pedig a gyakorlati megvalósíthatóság lehetőségei. Az új
technika hatékonyságát egzakt mérési eredményekkel bizonyítjuk, összehasonlítva korábbi
hagyományos nem-adaptív módszerek eredményeivel.
(Kulcsszavak: Elosztott rendszerek, Adaptív terhelés elosztás, J2EE alkalmazás szerver, JBoss)

195

Mileff and Nehéz: Intelligent dynamic load balancer for jboss application server

INTRODUCTION

As the number of concurrent requests received by a standalone server increases, the
application exceeds the estimated respond time when the work load is too much on a
server machine. At this time, there are two options to solve this problem: using faster
machines or using multiple machines. The first solution is expensive and limited by the
speed of a standalone machine. Second choice is more straightforward: deploy the same
application on several machines and redirect client requests to those machines. The
system is transparent from outside, which means, client applications perceive a
standalone very-fast server with one accessible IP address (Figure 1). To achieve the
performance and transparency, load balancing algorithms must be utilized.

Load balancing can improve the system performance by providing better utilization
of all resources in the whole system consisting of computers connected by local area
networks. The objective of load balancing is to reduce the mean response time of
requests by distributing the workload.

Theoretical possibilities of realizing load balancing on OSI Layers
The OSI model was developed as a framework for developing protocols and applications
that could interact seamlessly. The OSI model consists of seven layers and is referred to
as the 7-Layer Networking Model (Basney and Livny, 1999). Each layer represents a
separate abstraction layer and interacts only with its adjoining layers. Load balancing
mechanism can be realized on the Layer 3-7. OSI levels 3 and 4 can be supported
balancing mechanisms via network router devices. On layers 5 and 7, ‘URL Load
Balancing’ can be achieved. A lively example of ‘URL Load Balancing’ can be the
following: the URL may be static (such as http://www.xxx.net/home) or may be a cookie
embedded into a user session. An example of URL load balancing is directing traffic to
http://www.xxx.net/documents through one group of servers, while sending
http://www.xxx.net/images to another group. URL load balancing can also set persistence
based on the "cookie" negotiated between the client and the server.

Network-based load balancing
This type of load balancing is provided by network router devices and domain name
servers (DNS) that service a cluster of host machines. For example, when a client
resolves a hostname, the DNS can assign a different IP address to each request
dynamically based on current load conditions. The client then contacts the designated
server. Next time a different server could be selected for its next DNS resolution.
Routers can also be used to bind a TCP flow to any back-end server based on the current
load conditions and then use that binding for the duration of the flow. High volume Web
sites often use network-based load balancing at the network layer (layer 3) and transport
layer (layer 4). Layer 3 and 4 load balancing (referred to as “switching” Lindfors et al.,
2002), use the IP address/hostname and port, respectively, to determine where to forward
packets. Load balancing at these layers is limited, however, by the fact that they do not
take into account the content of client requests. Higher-layer mechanisms – such as the
so-called layer 5 switching described above – perform load balancing in accordance with
the content of requests, such as pathname information within a URL.

Operating System - based load balancing
This type of load balancing is provided by distributed operating systems via clustering,
load sharing, or process migration mechanisms. For instance Microsoft provides a new

 196

Acta Agr. Kapos. Vol 10 No 1

clustering possibility: Microsoft Cluster Server (MSCS). This special Microsoft software
provides services such as failure detection, recovery, and the ability to manage the
servers as a single system. Clustering is a cost effective way to achieve high-availability
and high-performance by combining many commodity computers to improve overall
system processing power. Processes can then be distributed transparently among
computers in the cluster. Clusters generally employ load sharing and process migration.
Balancing load across processors – or more generally across network nodes – can be
achieved via process migration mechanisms, where the state of a process is transferred
between nodes. Transferring process state requires significant platform infrastructure
support to handle platform differences between nodes. It may also limit applicability to
programming languages based on virtual machines, such as Java.

Middleware-based load balancing
This type of load balancing is performed in middleware products, often on a per-session
or per-request basis. For example, layer 5 switching has become a popular technique to
determine which Web server should receive a client request for a particular URL. This
strategy also allows the detection of “hot spots,” i.e., frequently accessed URLs, so that
additional resources can be allocated to handle the large number of requests for such
URLs.

Middleware-based load balancing can be used in conjunction with the specialized
network-based and OS-based load balancing mechanisms outlined above (Figure 1). It
can also be applied on top of consumer level (COTS) networks and operating systems,
which helps reduce cost. In addition, middleware-based load balancing can provide
semantically rich customization possibilities to perform load balancing based on a wide
range of application-specific load balancing conditions, such as run-time I/O vs. CPU
overhead conditions.

Figure 1

Horizontal load balancing

1. ábra: Horizontális terheléselosztás

 197

Mileff and Nehéz: Intelligent dynamic load balancer for jboss application server

THE PRACTICAL APPROACH OF BALANCING PROBLEMS

After we have surveyed the theoretical bases of the balancing in a few words we direct
our attention to more practical scope of the problem.

A dynamic load balancing can be either preemptive or non-preemptive. A non-
preemptive mechanism transfers only jobs that have just arrived, while a preemptive
mechanism transfers jobs at any time, even when the jobs are in execution. Because
preemptive mechanism are more costly than non-preemptive one and most of the benefit
that can potentially be achieved through dynamic load balancing can be achieved using
non-preemptive transfer only, non-preemptive transfers are usually used. Various
proposed dynamic balancing methods are based on several policies. Three important
ones among them are the transfer policy, the location policy and the selection policy,
which decide when, where and what jobs should be transferred respectively. Much work
(Basney and Livny, 1999; Schmidt et al. 2000) has been published on the design of
transfer and location policy but very few on the selection policy.

Balancing policy: When designing a load balancing service it is important to select an
appropriate algorithm that decides which server node will process each incoming
request. For example, applications where all requests generate nearly identical amounts
of load can use a simple Round-Robin algorithm, while applications where load
generated by each request cannot be predicted in advance may require more advanced
algorithms. In general, load balancing policies can be classified into the following
categories:
- Non-adaptive – A load balancer can use non-adaptive policies, such as a simple

Round-Robin algorithm or a randomized algorithm, to select which node will handle
a particular request.

- Adaptive – A load balancer can use adaptive policies that utilize run-time
information, such as CPU and disk I/O utilization, network loading.

Problem of real-time load balancing
The requests over the network arriving from clients and start a process in memory. Each
process runs separated from one another and rivals in gaining resources. The objective of
the balancers is to distribute these processes among the individual servers, that response
time of processes will be minimal. Because the characteristic of the running tasks can be
very various, so it is essential to use an adaptive load balancing algorithm, which try to
distribute the tasks in an intelligent way using as it is called load information. This is a
very difficult objective, beacause the balancer must accommodate the given job. When
we could know in advance what type of task will be arrive, the scheduling algorithm
could easily choose the most suitable server for the task, but the type of the tasks knows
in general only the client. So the traditional algorithms like Round-Robin or Random
access can be usable only with a certain type of tasks.

Leland and Ott (1986) analysed 9.5 million UNIX processes and found that there
are three type of processes: CPU intensive processes use great amount of CPU cycles but
do a little I/O operations; I/O intensive processes do a great deal of I/O but use a little
CPU cycles; canonical processes do a little I/O and use a little CPU cycles. The amount
of processes using great amount of CPU cycles and doing a great deal of I/O is
extremely small.

Cabrera (1986) analysed 122 thousand processes running on VAX11/785 and
found that mean lifetime of processes is 400 ms, the lifetime of 78% of processes is

 198

Acta Agr. Kapos. Vol 10 No 1

shorter than one second, 97% of processes terminate within 8 seconds. The author
concluded that only long live jobs should be candidates for load balancing due to the
overhead costs involved. In a loosely coupled distributed system based on network
message passing, a job running longer is often more suitable to transfer than a shorter job
since the overhead of transferring a short job may override the benefit.

But not all long running jobs are suitable to transfer. Interactive jobs which
constantly need I/O through keyboards and screens, and I/O intensive jobs which heavily
access the local file system, will run better locally even though the local CPU load is
very heavy (O’Ryan et al., 2000). In a world, only long life and CPU intensive jobs are
worthwhile to transfer for remote execution. The question is: how does a scheduler know
whether a job is long running and CPU intensive before executing the job? So, a
selection policy based on predicting behaviour of a job including it's lifetime and type is
needed to choose which job is suitable for transfer. Little work has been published on
this area. The difficult task is to decide the suitability of transferring a job non-
preemptively, i.e., predicating the execution time and resource requirements of the job
before it is actually executed.

Leland and Ott (1986) found that the residual CPU time needed by a process is
linearly related to the amount of CPU time already received by the process (age). The
authors developed an assignment scheme which distributes processes based on their age.
But an estimate of CPU requirement is unavailable prior to a process's execution.

CONCEPT OF AN INTELLIGENT LOAD BALANCER

To create an efficient Load Balancer is a very difficult objective. There are of course
many theoretical load balancing solution methods, but many times the practical modell
doesn’t make these implementation and efficiency possible. To find the suitable and
optimal method for balancing, it is essential to have the most deep knowledge level of
the specific system.

Before we go into the details of the Load Balancer, let us examine first the
theoretical modell, which is show in Figure 2:

Figure 2

JBoss Load Balancer Architecture

2. ábra: JBoss alapú terheléselosztó felépítése

 199

Mileff and Nehéz: Intelligent dynamic load balancer for jboss application server

The theoretical functionality of the balancer is the following: Standalone clients initiate
requests over the network through HTTP protocol or RMI to the JBoss cluster. The
JBoss cluster can be a complex of homogeneous or inhomogeneous computer on which
the JBoss application server runs in cluster mode. Of course, more clients can initiate a
request at the same time to the cluster, so the cluster must fulfil more than one request
parallel. The incoming requests are received and directed to the compliant node of the
cluster by the intelligent load balancer. So it’s objective is to choose the most ideal node
in term of execution based on the collected load information by the Dispatcher. To elect
the ideal node is not an easy matter. The main objective of the balancer is to realize a
more effective task-division, which response time can be more better than the former
algorithm. In additional we concentrate the detailed elaboration of the practical
realization.

Components of the Load Balancer
The architecture of our Balancer essentially can be divided into three individual
components: the Statistics Service, the Dispatcher, and the Scheduler as well. The
individual units are in close communication with one another, none of them can operate
without the others. At present the connection of the units works on the concept of the
Remote Method Invocation (RMI), but the following objective is to change the entire
comminucation or part of that to the new TreeCache method of JBoss. Utilizing
TreeCache, response time may be shorter.

Statistics Service
We can consider from the description above, that the Statistics Service is responsible for
the load information. Naturally this unit must run on each node. When a new node come
into the cluster, then the Statistics Service start immediately on it. It attempts to find the
Dispatcher and provide data to it. Figure 3 shows the architecture of the Statistics
Service and the Dispather:

Figure 3

Elements of Statistics Service

3. ábra: A statisztika szolgáltató MBean elemei

Figure 3 shows that Statistics Service is consisted of three parts: CPU -, I/O Statistics
and Fuzzy Engine. The functionality arise from those name: CPU Statistics services the
CPU usage and I/O Statistics the I/O usage of the specific node. The CPU Statistics and
the Fuzzy Logic represent collectively an MBean (Managed Bean) unit, however the I/O

 200

Acta Agr. Kapos. Vol 10 No 1

Statistics is an another separate MBean unit. In the JBoss system each MBean indicate
services. The sufficient node-information are essential to the compliant operating of the
balancer. In fact, Java classes are running in a virtual machine on each host, therefore it
does not make it possible to query the load information directly from the operating
system. For this reason we had to evolve individual methods and had to utilize operating
system specific resources. Nevertheless these resources are operating system dependent.

The current version of the balancer works on MS Windows Systems, but further
objective is to create Linux/Unix version too. Since the Java 1.5 appeared , it become
possible to measure the CPU average usage with the Java Management Extension
technology, using the built in OperatingSystemMXBean class. It has a function named
getProcessCpuTime(), which can query the CPU time of the specific JVM (Java Virtual
Machine) in nanosecond, from which the average CPU usage can be computed. The CPU
usage can be query direct from the operating system, but in this case the efficiency of the
balancer can degrade to a great extent. The reason for this is that, the MS Windows operating
system updates the data of the Performance Monitor every 1000 millisecond, on account of
which the schedule of the short task becomes impossible. The JBoss system can work with
50 ms sample time, but in this instance the data acquisition is fulfilled in every 100 ms.

The acquiring the I/O information is already much harder task by far. Now Java
helps us neither so much as was in case of CPU usage. To get the required infromation
we need operating system level methods, to which the C/C++ programming language
ensures the suitable environment. The solution was realized by the technology as called
JNI (Java Native Interfaces), which makes merging the C/C++ and the Java
programming language possible. So the survey data of the I/O are realized by native
invocation. However the operating system is again a limiting factor, because the data are
only updated in every 1000 millisecond. If the client requests are not so frequent, this
limit is enough in practice.

Before we change to the consideration of the Fuzzy Engine, it is necessary to make
a mention of a relevant feature of the statistics collector MBeans. All the nodes send
information to the Fuzzy Engine, when the avarage usage of these are smaller than
100%. This is the most essential condition of the operating of the balancer, what we will
detail in the discussion of the Dispatcher.

The Fuzzy Engine is responsible for the part of the adaptivity of the balancer. It
gathers the information sended by I/O and CPU services and deducts a fuzzy value between
0 and 1 supported by a preset Fuzzy Engine. This fuzzy value will be sent to the
Dispatcher, that stores it in a hashtable. Current version of Balancer use three fuzzy
linguistic variables: one for I/O and an other for CPU utilization and the third one indicates
the service capability of a server node. First two variables are considered input variables
and third one as output variable. Both input variables are divided into three membership
functions, therefore output server capability must be divided into six membership
functions. Further aim is to fine the shape of membership functions using a fuzzy-neuro
engine. In Figure 4, all membership functions of fuzzy variables can be seen.

The dispatcher
The Dispatcher is the second most important part of the Load Balancer. It is also realized
by MBean. It’s objective is to store the status information sended by each node in a
hashtable structure. Figure 3 shows the architecture of the Dispatcher.

The sent forwarded information consist of two parts: a fuzzy engine value and the
IP address of the specific node. The IP address is essential to identify the nodes. The
infomormation gets to a hashtable bucket in a vector with the time of arrival together. As
Figure 3 shows, the key of the hashtable is the IP address, because it is individual.

 201

Mileff and Nehéz: Intelligent dynamic load balancer for jboss application server

By the discussion of the Statistics Service we have mentioned, that there is a condition,
whereas a node only send the information to the Dispatcher, when its load is fewer than
100%. In Dispatcher this effects, that the belonging stored information of the hashtable
bucket will not be updated. The time stamp of the data is therefore essential, because
relying upon these findings will the balancer make a decision to wich information are
timely, and which not.

The Dispatcher can be find on only one node in the cluster. It makes no difference
on which, but the best thing to do is that, it is started on the fastes node. The connection
between the Statistics Services and the Dispatcher is dynamic, that is each node in
startup finds and stores the address of the node on which the Dispather runs.

Figure 4

The Fuzzy Engine Linguistic Variables

0

1

0 0.40.20.25 0.5 0.750.6 0.8 1

Low Medium High

0 0.40.20.25 0.5 0.750.6 0.8 1

Low Medium High

1

Very Low

0.15 0.250.075
0.275

0.3 0.4 0.55
0.425

0.45 0.7
0.575

0.6
0.725

0.850.75
0.875

Low Medium Low Medium Medium High High
1

D
is

k
U

sa
ge

C
PU

 U
sa

ge

C
ap

ab
ili

ty

1

4. ábra: A Fuzzy motorban értelmezett változók

The Balancer
After preparation of the data the work of the balancer is no more so difficult. However
we have to pay attention at the optimal implementation, because the least mistake can
also cause big response time decrease. The balancer is a java class implemented a
CustomLoadBalancePolicy interface, which is functionally part of the JBoss base
interfaces.

Its theoretical operating is the following: The balancer make a decision on the bases
of the status information collected from server nodes. It considers those information
valid, which arrived within 150 ms. Those nodes, which are highly loaded, they don’t
send any information to the Dispatcher, so naturally the balancer doesn’t give them a
new task. The balancer will choose the node with the best fuzzy engine value. However
in case of a big loaded cluster can often occure so, that all of the nodes are loaded fully
and none of them makes a sign. Nevertheless in this case the balancer have to choose
one of them, but the question is which one.

Many solution methods have sprung up, however by reason of the tests it appeared,
that such method needed, which can efficiently distribute the works in case of big loaded

 202

Acta Agr. Kapos. Vol 10 No 1

nodes. The first solution is the random distribution. It can be good, or can be very bad
because of the random distribution. For instance if the random balancer gives the work
to such node, which is slower than the others, and of course also loaded on 100%. It
proved a little better that method which gives the work to that node, which average non-
response time is the least, if every node are out of time constraint.

A very important element of the balancer is the following: in the current version of the
balancer a node can get a work twice one after the other only, if its CPU usage doesn’t
correspond to the stored value at the giving out of the previous work and also this value is so
more little, than the value of all the nodes. This condition came into the balancer therefore,
because when almost more clients all at ones give their requests parallel, then without this
condition the same node receive the request of more clients, because the requests are so close
to one another, that the data of the balancer couldn’t update so quickly.

Test and results
The testing process has been carried out on a JBoss cluster consisting seven
homogeneous PC-s. Each machine had Pentium III 733 MHz CPU with 256 MByte
RAM. Machines were connected via 100Mbps Ethernet network. Utilized operation
system was Windows 2000 SP5. Application server version was JBoss 3.2.5
‘WonderLand’.

Simulating client requests was carried out with a generic professional simulation
environment: Apache JMeter (2005). During testing process server machines where
slowed-down randomly with a special Loader-MBean emulating I/O or CPU load.
Loader-MBean is used for emulating other clients requests and other applications that
are parallel launching on the server nodes.

We have started the simulations with a client, then we increased the number of clients
to seven. In the course of all simulation we have tested all algorithms three times, then we
represented these average results on the Figure 5. The diagram shows properly, that in every
case the results of the Round-Robin fell short of the results of the Intelligent Balancer.

Figure 5

Test results

0
50

100
150
200
250
300
350

1. client 2. client 3. client 4. client 5. client 6. client 7. client

Number of clients (2)

Th
ro

ug
hp

ut
 (1

)

Random Intelligent Balancer (3) Average Intelligent Balancer (4) Round Robin (5)

5. ábra: Szimulációs eredmények

Teljesítmény(1), Kliensek száma(2), Véletlen elosztású adaptív ütemező(3), Átlagos
elosztású adaptív ütemező(4), Round-Robin(5).

 203

Mileff and Nehéz: Intelligent dynamic load balancer for jboss application server

If we examine the results we can see that, the value of the Throughput increases with the
increasing number of the clients, although it is not in direct ratio. The more clients
initiate request to the cluster, the more clients share the CPU. Exactly that is why it does
no good to more increase the number of the client – like number of the nodes – in the
course of the measurement, because at such times the scheduling lose its importance.

Of course, it depends on the type of the task scheduling requisted task, that they in
what extent require the resources. In the course of seven homogeneous nodes optimal
distribution is, if all of them get one. Certainly, we assume that the request of the clients
arrive in near time. Because the artificial loads run in random time on the nodes,
therefore certain corresponding with the number of nodes or more the nodes become full.

At that time every node are maximum load. Whereas at such time the scheduling is
impossible, therefore the best solution is that, if we distribute the taks optimal among the
nodes till then, while the scheduling will be become possible. The Balancer does it in
two ways: with random node-choosing and with average response time. One node could
not get two tasks one after another.

The Figure 5 shows both results of the algorithm and with increasing of the number
of clients – which means that the more task get into the system – better and better
approach the theoretical maximum of the respose time of the Round-Robin and the
Intelligent Balancer.

In the event of inhomogeneous nodes certainly we can reach much better response
time, but of course it depends on the inhomogenity of the nodes.

The following table summarizes, how much speed increase can be achieved
utilizing new Balancer compared with applying Round-Robin algorithm. Results highly
depend on the type of tasks: a task to what extend claims the capcity of a node. In our
test environment, execution time of a task is 500 ms on a non-loaded server node. Client
requests follow each other within 500ms time intervall and plus minus 200ms uniform
random time. Aim of random intervall is to simulate realistic non-predicted client
requests. Based on the test results, it is clear that our intelligent balancer algorithm has
better performance than Round-Robin algorithm.

During tests intelligent load balancer and only Round-Robin algorithm was
compared because Round-Robin algorithm is definetly better that other classic methods
like: First Available and Random balancer algorithms. Thus our aim was to outstrip this
traditional non-adaptive method.

Table 1.

Balancing Algorythms comparison

Speed Improvement/client (2) Balancer Type (1) 1. client 2. client 3. client 4. client 5. client 6. client 7. client
Random Intelligent
Balancer (3) 25% 23% 20% 16% 10% 10% 7%

Average Intelligent
Balancer (4) 30% 23% 21% 18% 14% 9% 4%

1. táblázat: Terheléselosztó algoritmusok összehasonlítása

Ütemező típusok(1), Sebesség növekmény/kliens(2), Véletlen elosztású adaptív
ütemező(3), Átlagos elosztású adaptív ütemező(4).

 204

Acta Agr. Kapos. Vol 10 No 1

CONCLUSION

An intelligent fuzzy-based Load Balancer Application and its test results have been
presented in this paper. Continuing work will focus on further developing and
implementing more flexible XML based configuration possibilities and redesign
communication between server nodes and the dispatched session bean utilizing the new
JBoss TreeCache introduced by the latest JBoss version 4.0.

ACKNOWLEDGEMENTS

The research and development summarized in this paper has been carried out by the
Production Information Engineering and Research Team (PIERT) established at the
Department of Information Engineering and supported by the Hungarian Academy of
Sciences. The financial support of the research by the aforementioned source is
gratefully acknowledged.

REFERENCES

J. Lindfors, M. Fleury, The JBoss Group (2002). JMX: Managing J2EE with Java

Management Extensions. SAMS Publishing Inc., 56-123.
J. Basney, M. Livny (1999). Deploying a High Throughput Computing Cluster. In: High

Performance Cluster Computing, 1. May 1999.
C. O’Ryan, F. Kuhns, D.C. Schmidt, O. Othman, J. Parsons (2000). The Design and

Performance of a Pluggable Protocols Framework for Real-time Distributed Object
Computing Middleware. In: Proceedings of the Middleware 2000 Conference,
ACM/IFIP, Apr. 2000. 78-90.

D. Schmidt, M. Stal, H. Rohnert, F. Buschmann (2000). Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects. Wiley

L.M. Cabrera (1986). The influence of workload on load balancing strategies, In: Proc.
Summer USENIX Conf., June 1986. 446-458.

W. Leland, T. Ott (1986). Load balancing heuristics and process behavior. In: Proc.
ACMSIGMETRICS Conf. Measurement and Modeling of Computer Syst., May 1986.

J. Shirazi (2003). Java Performance Tuning, Second Edition, O’Relly, 2003. 34-142.
JMeter (2005). Generic Simulation Environment http://jakarta.apache.org/jmeter,

(Apache Jakarta JMeter)
JBoss (2005). Leading J2EE Open Source Application Server, www.jboss.org
Fuzzy Logic Systems (2005). http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

 205

Mileff and Nehéz: Intelligent dynamic load balancer for jboss application server

Corresponding author (Levelezési cím):

Péter Mileff
University of Miskolc
Department of Information Engineering
Production Information Engineering Research Team (PIERT) of the Hungarian
Academy of Sciences
H-3515 Miskolc Egyetemváros
Miskolci Egyetem, Alkalmazott Informatikai Tanszék
Magyar Tudományos Akadémia Termelés Informatikai Kutatóhelye (PIERT)
Alkalmazott Informatikai Tanszék
3515 Miskolc Egyetemváros
Tel.: 36-46-565-111/19-52, Fax: 36-46-563-405
e-mail: mileff@ait.iit.uni-miskolc.hu

 206

	
	
	
	The dispatcher
	The Balancer
	Balancer Type (1)
	S

	

