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New Approaches to the Identification
of Semi-mechanistic Process Models

J. Madár, J. Abonyi, F. Szeifert
University of Veszprém, Department of Process Engineering, P.O. Box 158, H-8201, Hungary

ABSTRACT

In process engineering, first-principles models derived from dynamic mass, energy and
momentum balances are mostly used. When the process is not perfectly known, the
unknown parts of the first principles model should be represented by black-box models,
e.g. by neural networks. This paper is devoted to the identification and application of
such hybrid models. For the identification of the neural network elements of a hybrid
model two methods are investigated in this article: back-propagation algorithm and
direct optimization. We study three optimization algorithms: Sequential Quadratic
Programming, Evolutionary Strategy and Particle Swarm Optimization. The different
algorithms are compared in a case study, the baker’s yeast production process.
(Keywords: Hybrid models, Artificial Neural Networks, Baker’s yeast fermentation)

ÖSSZEFOGLALÁS

Új módszerek a szemi-mechanisztikus modellek identifikációjára
Madár J., Abonyi J., Szeifert F.

Veszprémi Egyetem, Folyamatmérnöki Tanszék, Veszprém, 8201 Pf. 158.

A folyamatmérnöki gyakorlatban a tömeg-, energia- és impulzusmérlegen alapuló fehér-
doboz modellek terjedtek el. Ha azonban a folyamat teljes egészében nem ismert, akkor
az ismeretlen részeket fekete-doboz modellekkel kell leírni. Erre különösen alkalmas a
mesterséges neurális hálózat. Ennek a munkának a célja olyan módszerek bemutatása,
amik alkalmasak az ilyen hibrid nemlineáris modellek identifikációjára. Ebben a cikkben
két identifikációs módszert vizsgáltunk meg: a back-propagation algoritmust és a direkt
optimalizációt. Megvizsgáltuk a legelterjedtebb nemlineáris optimalizáló technikák
használhatóságát, mint a klasszikus Sequential Quadratic Programming, Evolutionary
Strategy és a Particle Swarm Optimization. Ezeket a technikákat egy alkalmazási példán
keresztül mutatjuk be, amiben a kenyérélesztő fermentációs eljárást modelleztük.
(Kulcsszavak: hibrid modellek, neurális hálózatok, kenyérélesztő fermentációs eljárás)

INTRODUCTION

In process engineering two main classes of modeling methods exist: 1. white-box or first
principle modeling (Hangos, 2001), 2. black-box modeling (Sjöberg, 1995). In chemical
engineering, first-principles models derived from dynamic mass, energy and momentum
balances are mostly used. But the application of first principle models can fail because
sometimes the model parameters are not known, or the state variables of the process
cannot be measured or we do not know the process well. In these cases the data-driven
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black-box modeling strategy should be used instead of the white box strategy.
Unfortunately, completely data-driven black-box identification techniques often yield
unrealistic models (Abonyi, 1999). This is typically due to an insufficient information
content of the identification data and due to overparameterization of the models. Another
disadvantage is the non-scalability of black box models, i.e., one has to collect new
training-data when the process is modified.

Due to the given drawbacks, combinations of a priori knowledge with black-box
modeling techniques are gaining considerable interest. Two different approaches can be
distinguished: grey box modeling and semi-mechanistic modeling. In a grey box model, a
priori knowledge or information enters the black-box model as constraints on the model
parameters or variables, smoothness of the system behavior, or open-loop stability
(Tulleken, 1993). A major drawback of this approach is that it may suffer from the same
drawbacks as the black-box model, i.e. no extrapolation is possible and time-varying
processes remain a problem. One may also start by deriving a model based on first-
principles and then include black-box elements as parts of the white-box model frame
(Thompson, 1994 and Psichogios, 1992). This modeling approach is usually denoted as
hybrid-modeling or semi-mechanistic modeling. The latter term is used in the sequel
because the first one is rather confusing with other methods. Johansen (Johansen, 1994)
describes various techniques to incorporate knowledge into black-box models. Thompson
and Kramer (Thompson, 1994) used the so-called parallel approach of semi-mechanistic
modeling, see Figure 1. Here, the error between the data and the white-box model is
represented by a neural network. They also describe the serial approach where a neural
network is used to model unknown parameters. Several authors applied hybrid models for
the modeling of biotechnological systems (Simutis, 1997 and Psichogios, 1992).

Figure 1

Parallel and serial combinations of white and black box models

Black-box
model

White-box
model

Black-box
model

Black-box
model

1. ábra: Párhuzamos és soros kombinációja a fehér és fekete doboz modelleknek

Fekete doboz modell(1), Fehér doboz modell(2)

In this paper, we focus on serial semi-mechanistic models where an artificial neural
network is used to represent, in a mechanistic sense, difficult-to-model parts of our

(1)

(2)
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system. The application of neural networks is also a well studied idea, as data based
modeling offers an alternative to rigorous modeling based on physical principles. This
hybrid modeling approach includes the following steps:
– Design the structure of the hybrid model.
– Design the structure of the black-box element (neural network) of the hybrid model.
– Make experiments on the modeled plant; collect input-output process data.
– Train the black-box element for the dynamics of the plant based on the measurements

(identification of black-box element).
The aim of this work is to show how the neural networks can be efficiently incorporated
into the semi-mechanistic modeling environment and to propose new approaches for
identification of neural networks. We propose two methods for identification of hybrid
models: the back-propagation algorithm and the direct optimization technique. As the
classical identification of the neural network should be based on input-output process
data and the neural network is incorporated into a differential equation system, the
identification of neural network is not an easy task. In this paper, it will be shown how
the proposed methods can be applied for identifying a hybrid-model. Three optimization
algorithms will be presented and compared in the paper: the classical Sequential
Quadratic Programming (SQP), the Evolutionary Strategy (ES) and the Particle Swarm
Optimization. The hybrid modeling and the identification techniques are illustrated on an
application example where we model the baker’s yeast production process.

HYBRID MODELS BASED ON NEURAL NETWORKS

The advantage of white box models is that they have the capability to explain the
underlying mechanistic relationships of the process. These models are, applicable
independently of the process scale to a certain extent. Furthermore, these models are
easy to modify or extend by changing parts of the model. Generally, models of lumped
process systems in chemical engineering are formulated in a form of differential
equations:
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where x is the state-variable vector, y is the output, u is the input (we assume single input
- single output systems). These differential equations are formulated by macroscopic
balance equations, for instance, mass or energy balances. These balances are based on
conservation principle that leads to differential equations written as
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where x is a certain conserved extensive quantity, for example mass or energy.
In a practical situation, the construction of white-box models can be difficult

because the underlying mechanisms may not be completely clear, experimental results
obtained in the laboratory do not carry over to practice, or parts of the white-box models
are in fact not known. This means that sometimes not all of the terms in (2) are exactly
or even partially known. In semi-mechanistic modeling, black-box models, like neural
networks, are used to represent the otherwise difficult-to-obtain parts of the model. One
of the advantages of the semi-mechanistic modeling strategy to the black-box modeling
is that it seems to be more promising with respect to extrapolation properties (Can,
1996). Usually, the reaction rates (the amount of generated and consumed materials in
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chemical reactions) and the thermal effects (e.g. reaction heat) are especially difficult to
model, but the first two transport terms (inlet and outlet flows) in (2) can be obtained
easily and accurately. Hence, in the modeling phase it reveals which parts of the first
principles model are easier and which are more laborious to obtain and often we can get
the following hybrid model structure:
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where x, u and y denote state vector, manipulated input and output of the system; fNN is
the black-box element of the model which models the “difficult-to-model” part of the
system; the z and θ  are input vector and parameter set of fNN.

In this paper, the black box element is represented by a feed-forward multi-input
multi-output neural network with one hidden layer. The neurons of hidden layer have
tanh activation functions, the neurons of output layer have linear functions:

( ) ( ) ( )( ) 2
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where nn is the number of hidden neurons, z=[z1,…,zni]Tis the input of network, W1 is the
weight matrix of hidden layer, b1 is the bias vector of hidden layer, W2 is the weight
matrix of output layer, b2 is the bias vector of output layer. θ  contains all of the
parameters: { }2121 ,,, bbwWθ = . The number of output neurons of the neural network is
determined by the structure of hybrid model and by the modeler.

IDENTIFICATION OF NEURAL NETWORKS OF HYBRID MODELS

The identification of neural networks, so-called training of neural networks, means
determining the parameters of networks. The classical algorithm for training is the back
propagation algorithm which uses a training input-output data. We propose another
method, the direct optimization technique. For direct optimization several optimization
algorithms can be applied; in this article the Evolutionary Strategy or Particle Swarm
Optimization will be presented.

Back-propagation algorithm
The classical back-propagation algorithm uses a given input-output data set (training
data set) in such a way that the sum of the squared deviations,
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1 )V  between the predicted output of the network (from the

training input data) and the corresponding training output data becomes minimal. The
usual way to minimize VN is to use gradient procedures, like Gauss-Newton algorithm.
Weights in the i-th step of this iterative process are changed in the direction of gradient
(for single output neural network):
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where ( )kfNN  is the output of network for the k-th data point, ( )kf NN
ˆ  is the corresponding

desired (measured) output, N is the number of data points, θ  is the parameter vector of
network.

The disadvantage of this algorithm is that the neural network is incorporated into
the hybrid model (3), so the x state variables of the system can be measured directly
instead of the desired network output. Hence to apply this algorithm, one must estimate
the corresponding desired outputs from the measurement:

( ) ( ) ( ) ( )( )kkukfkf HYBNN xx &,,ˆ 1−= (7)

where x(k) and u(k) are the k-th measured state variable vector and manipulated input.
The ( )kx&  is the derivative x(k), and it can be calculated from the measurement, e.g.
using Euler discretization: ( ) ( ) ( )( ) 0/1 Tkxkxk −+=x& . Certainly, if the T0 sampling time is
large and/or there is relatively high measurement noise, the performance of the whole
algorithm will the decrease because the neural network will be trained to estimate the
average reaction rates over sampling periods. The accuracy of the algorithm can be
improved by generating new data points by an interpolation algorithm, e.g. linear
interpolation or cubic-spline interpolation.

The advantage of this algorithm is that it is fast, so this algorithm can be used for
generating initial points for slower direct optimization algorithms, which will be
presented in the following subsections.

Direct optimization of neural network parameters
The identification of the neural network parameters can be formulated as a classical
optimization problem, where the optimization goal is to minimize the square error
between measured output and the hybrid model output:
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where ( )ky  is the output of (3) hybrid model at the k-th time instant, ( )kŷ  is the
measured output of system in the k-th time instant, N is the number of data points. The
hybrid model output can be calculated in n-step ahead mode. Certainly, if one chooses
n=N, the n-step ahead mode will be equal to free-run mode; and if one chooses n=1, it
will be equal to one-step ahead mode. If one has few measurement point, the one-step
ahead mode is recommended, but if there is a large measurement noise, bigger n values
may be better. In the application example, the free-run mode was used. There are several
optimization algorithms which can be used in this method. In this article we investigated
three algorithms: Sequential Quadratic Programming (SQP), Evolutionary Algorithms
(ES) and Particle Swarm Optimization (PSO). In the following the ES and PSO
algorithms will be presented.

Evolutionary Strategy (ES)
The Evolutionary Strategy (Rechenberg, 1973, Spears, 1993) is an Evolutionary
Algorithm (EA). EAs work with a population of potential solutions to a problem, where
each individual within the population represents a particular solution. Every individual
has a fitness value which expresses how good the solution is at solving the problem.
Table 1 outlines this optimization algorithm.
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Table 1

Evolutionary algorithm

procedure EA (1); {
Initialize population (2);
Evaluate all individuals (3);
while (not terminate) do (4) {

Select individuals (5);
Create offspring from selected individuals (6)

using Recombination and Mutation (7);
Evaluate offspring (8);
Replace some old individuals by some offspring (9);

}
}

1. táblázat: Evolúciós algoritmus

Eljárás EA(1), Kezdeti populáció generálása(2), Összes egyed Fitness-értékének
kiszámítása(3), ciklus amíg(nem leállási-feltétel)(4), Egyedek kiválasztása(5), Új egyedek
generálása a kiválasztottakból(6), Rekombináció és mutáció operátorral(7), Összes egyed
Fitness-értékének kiszámítása(8), Régi egyedek kicserélése az új egyedekkel(9)

A population of individuals is randomly initialized and then evolved from generation to
generation by repeated applications of evaluation, selection, mutation and
recombination. In the selection step, the algorithm selects the parents of the next
generation. After the selection of the individuals, the new individuals of the next
generation (also called offspring) are created by recombination and mutation. The
recombination (also called crossover) exchanges information between two selected
individuals to create one or two new offspring. The mutation operator makes small,
random changes to the individual. The final step of the evolutionary procedure is the
replacement, when the new individuals are inserted into the new population. Once the
new generation has been constructed, the processes that result in the subsequent
generation of the population are begun once more.

The individuals in ES are represented by n-dimensional vectors, often referred to as
object variables. To allow for a better adaptation to the particular optimization problem,
the object variables are accompanied by a set of the so-called strategy variables. Hence,
an individual aj consists of two components, the object variables xj, and strategy
variables jσ .
As mutation operator normally distributed random numbers are added to the individuals:

( )ijijij Nxx ,,, ,0 σ+= (9)

Before the update of the object variables, the strategy variables are also mutated using a
multiplicative normally distributed process:
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with as a global factor which allows an overall change of the mutability and allowing for
individual changes of the mean step sizes. The parameters can be interpreted in the sense
of global learning rates. Schwefel (1995) suggests setting them as

nn 2

1
2
1' == ττ (11)

Recombination in ES can be either sexual (local), where only two parents are involved in
the creation of an offspring, or global, where up to the whole population contributes to a
new offspring. Traditional recombination operators are discrete recombination,
intermediate recombination, and geometric recombination, all existing in a sexual and
global form.  When F and M denote two randomly selected individuals from the µ parent
population, the following operators can be defined:
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The selection is stochastic in the ES. First we chose the best µ individuals to be parents,
and then we select the parent-pairs uniformly randomly from these individuals.

Particle Swarm Optimization (PSO)
The particle swarm concept originated as a simulation of a simplified social system. The
original intent was to graphically simulate the choreography of a bird block or a fish
school. However, it was found that a particle swarm model can be used as an optimizer.
Suppose the following scenario: a group of birds are randomly searching food in an area.
There is only one piece of food in the area being searched. All the birds do not know
where the food is. But they know how far the food is. So what's the best strategy to find
the food? The effective one is to follow the bird which is nearest to the food. Particle
swarm optimization (PSO) is based on this scheme. This stochastic optimization
technique has been developed by Kennedy (1995) and Eberhart (1998). In PSO, the
potential solutions, called particles, fly through the problem space by following the
current optimum particles. All of the particles have fitness values which are evaluated by
the fitness function to be optimized, and have velocities which direct the flying of the
particles.

PSO is initialized with a group of random particles (solutions) and then searches
for optima by updating generations. In every iteration, each particle is updated by
following two "best" values. The first one is the best solution (fitness) it has achieved so
far. (The fitness value is also stored.) This value is called pbest. Another "best" value
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that is tracked by the particle swarm optimizer is the best value, obtained so far by any
particle in the population. This best value is a global best and called gbest.

When a particle takes part of the population as its topological neighbors, the best
value is a local best and is called lbest.

( ) ( )
dtkkk

krandckrandckwk

jjj

jgbestjpbestjj
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−⋅⋅+−⋅⋅+⋅=+

)1()()1(
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where v is the particle velocity, present is the current particle (solution), pbest and gbest
are defined as stated before, rand() is a random number between [0,1), c1, c2 are learning
factors usually c1 = c2 = 2. Table 2 shows the pseudo code of the PSO algorithm.

Table 2

PSO algorithm

procedure PSO (1); {
Initialize particles (2);
while (not terminate) do (3){

for each particle (4){
Calculate fitness value (5);
if fitness < pBest than  pBest = fitness (6);

}
Choose the best particle as the gBest (7);
for each particle (8){

 Calculate particle velocity (9);
 Update particle position (10);
 }

}
}

2. táblázat: PSO algoritmusa

Eljárás PSO(1), Kezdetei részecskék generálása(2), Ciklus amíg(nem leállási-feltétel)(3),
Mindegyik részecskére(4), Fitness-érték számítása(5), Ha fitness < pBest Akkor pBest =
fitness(6), A legjobb részecske kiválasztása, mint gBest(7), Mindegyik részecskére(8),
Részecske sebesség-vektorának számítása(9), Részecske helyének módosítása(10)

The role of the, w, inertia weight in (13), is considered critical for the PSO’s
convergence behavior. The inertia weight is employed to control the impact of the
previous history of velocities on the current one. A large inertia weight facilitates global
exploration (searching new areas), while a small one tends to facilitate local exploration,
i.e. fine–tuning the current search area. In this work, we used a compromise solution: the
weight parameter linearly decreased during the optimization from a maximum value to a
minimum value.

The ES and PSO have several tuning parameters. The Table 3 shows the
parameters which we used in this work.
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Table 3

ES and PSO parameters

Parameter Value/Setting(10)
Population size(1) 40
Number of parents(2) 10
Selection / Replacement(3) (µ + λ)
Recombination of design variables(4) Discrete sexual(5)
Recombination of strategy variables(6) Intermediate sexual(7)

τ'
n2

1ES:

τ
n2

1

Population size(1) 30
c1 2
c2 2
w at the start(8) 0.95

PSO:

w at the end(9) 0.4

3. táblázat: ES és PSO paraméterei

Populáció mérete(1), Szülők száma(2), Kiválasztás/kicserélés(3), Tervezési változók
rekombinációja(4), Diszkrét szexuális(5), Stratégiai változók rekombinációja(6), Köztes
(átlagoló) szexuális(7), w az első iterációban(8), w az utolsó iterációban(9), Érték/Típus(10)

APPLICATION EXAMPLE

This example is based on the baker’s yeast production process. The model (Oliveria,
2004) considers three pathways for carbon source utilization that may be lumped
together into three macroscopic reactions. The model of the system is the following:
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where X, S, E are the biomass, sugar and ethanol concentration, and the 
O
Sµ , 

R
Sµ  and

O
Eµ  are the reaction kinetics (see Oliveria, 2004). The bioreactor operates in fed-batch,

the dilution rate D = F/V, and the volume balance is: dV/dt=F. The X and S initial
concentrations were generated uniformly randomly: X(0)=0-1 g/l, S(0)=0-2 g/l, the initial
ethanol concentration and volume were E(0)=1 g/l and V(0)=1 l. The feed rate was
generated from the uniform distribution in the range of 0-1 l/h with 2 h frequency. The
feed sugar concentration was Sin=50 g/l, the oxygen concentration is controlled 0,1 g/l.

This reaction kinetic of baker’s yeast fermentation process is difficult, so we
assumed that it is not known. Hence in this example, the first principle model was used
as a ‘real’ plant, but for modeling of the process we consider the application of a hybrid
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model. Because the critical part of the model is the chemical reaction, we constructed a
hybrid model, where the chemical reaction is modeled by neural network:
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where the output neural network is a vector of calculated reaction rates. The input of
neural network is the current biomass, sugar and ethanol concentrations

( ) ( ) ( )[ ]kEkSkXz ,,= . The neural network (NN) was a feed-forward network and it
consists of five hidden layer nodes with tangent sigmoid transfer functions, and three
output layer node with linear transfer function.

It is well known that during the fermentation process, the reaction kinetic can
switch between aerobic and fermentative metabolic states. Hence we applied two NNs,
one for fermentative metabolic state and one for aerobic. In the first-principle model, the
fermentative state changes to the aerobic state when the sugar uptake rate becomes
smaller than the oxygen uptake rate. But this relationship can not be used in the hybrid
model, because we assume that we do not know the reaction kinetics. But we know that
the oxygen concentration is controlled during the process, so the type of metabolic state
depends on sugar concentration. Hence we choose the simple rule for the hybrid model:
if the sugar concentration is bigger than 0.05 g/l, then the first neural network is used,
and if it is smaller, the other neural network is used, see Figure 2. (The 0.05 g/l is an
approximately value, which can be estimated from the experiments.)

Figure 2

Structure of neural networks for the application example
If: S>0.05 g/l than NN1 else NN2

X,S,E  r ,r ,1 2 r3

NN1

NN2

2. ábra: A neurális hálózat modell struktúrája az alkalmazási példában (Ha S>0,05 g/l,
akkor NN1, különben NN2)

For the training of NNs, four different data-sets were used. These data-sets contained
measurement data of 20 experiments of simulated plant. Every experiment took 18 hours
long, and these experiments were different in initial concentrations and the inlet flow-
rate profiles. The four data-sets:
– Data-set 1: sample time is 1 hour, the relative measurement noise level is 0%
– Data-set 2: sample time is 1 hour, the relative measurement noise level is 5%
– Data-set 3: sample time is 2 hour, the relative measurement noise level is 0%
– Data-set 4: sample time is 2 hour, the relative measurement noise level is 5%
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The measurement noise was generated from normally distributed pseudo random
numbers. The performances of identified hybrid models were measured by mean-
absolute-error between ‘real’ X, S and E concentration trajectories and the estimated
trajectories by hybrid models (in free-run mode). The performance values were
calculated based on two independent experiments, which were different from the 20
training experiments.

Table 4

Estimation error by identified hybrid models (Back-propagation method)

Data set(1)
1 2 3 4

No interpolation(2) 0.41 0.29 1.12 2.85
Linear interpolation(3) 0.22 0.28 0.74 0.84
Spline interpolation(4) 0.14 0.27 2.73 2.63

Remark (megjegyzés): In free-run mode. (Szabad futású szimulációval.) Mean absolute
error of concentrations (g/l). (A koncentrációk átlagos abszolút hibája (g/l).)

4. táblázat: Az identifikált hibrid-modell becslési hibája (direkt optimalizálással)

Adat halmaz(1), Nincs interpoláció(2), Lineáris interpoláció(3), Spline interpoláció(4)

Table 5

Estimation error by identified hybrid models (Direct optimization method)

Data set(1)
1 2 3 4

SQP 0.10 0.10 0.31 0.26
ES 0.14 0.27 0.74 0.84
PSO 0.14 0.27 0.74 0.84

Remarks (megjegyzés): In free-run mode. (Szabad futású szimulációval.) Mean absolute
error of concentrations (g/l). (A koncentrációk átlagos abszolút hibája (g/l).) The result
of the ES and PSO are the same as the initial points of them (from back-propagation).
(Az ES és a PSO algoritmusok nem konvergáltak, így nem volt eredményük.)

5. táblázat: Az identifikált hibrid-modell becslési hibája (direkt optimalizálással)

Adat halmaz(1)

Table 4 shows some comparisons of the numerical results of back-propagation training
algorithm without interpolation, with linear interpolation and with cubic spline
interpolation. In the first case, there was not interpolation, so the training data only
contained the measurement data (with 1 or 2 hour sample time). In the second and third
case, we applied interpolation algorithms to estimate the X, S, and E concentration
values at every 0.1 hour, so the training data contained not only the measurement data,
but the interpolated values too. The initial point (initial weights of neural networks) was
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generated randomly, and we maximized the number of iterations to 100, which was
enough for the algorithm to converge into a local minima.

The numerical results show that when the sample time is not too large (1 h), the
spline interpolation is the best technique, but when the sample time is large (2 h) the
linear interpolation is the best. The reason for this is that when the sample time is large,
there are few data points and the spline approximation became too inaccurate even
compared to linear approximation. An example for the hybrid modeling result can be
seen on Figure 3.

Figure 3

Free-run simulation result of a hybrid model
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Dotted line (szaggatott vonal): real conc. trajectories (koncentrációk), Solid line (sima
vonal): hybrid model output (hibrid modell eredménye), X: biomass (biomassza), S:
sugar (cukor), E: ethanol conc. (g/l), (Back propagation – linear interpolation, Data set 1)
(Hiba-visszaterjesztés – Lineáris interpoláció, 1. Adat halmaz)

3. ábra: Hibrid modell szabad futású szimulációs eredménye

Table 5 shows the numerical results of direct optimization methods. The initial point for
the direct optimization algorithms were the resulted hybrid model by back-propagation
algorithms with spline interpolation (Data set 1 and 2) and linear interpolation (Data set
3 and 4). Because the direct optimization is slow, we maximized the number of function
evaluations in 4000. Unfortunately, the ES and PSO algorithm was not able to find a
better solution than the initial point. The reason for this is that the problem space is very
large; the number decision variables is 76 (summary the two neural network have 76
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parameters). The SQP algorithm was able to optimize the parameters of neural networks,
and finally the resulted hybrid models had the ability to model the process very well.

CONCLUSIONS

In chemical and biochemical engineering the white-box modeling method is widely
used. But sometimes the process is not perfectly known. To avoid this difficulty, the
unknown parts of the first principles model can be represented by black-box models, e.g.
by neural networks. This paper is devoted to the identification and application of such
hybrid models. For the identification of the neural network elements of the hybrid model
two main methods are investigated: back-propagation algorithm and direct optimization
by SQP, ES or PSO. These methods are illustrated in a case-study: the baker’s yeast
production process. We found that the efficiency of the back-propagation algorithm can
be improved by interpolating measured data points using linear or cubic spline
interpolation methods. On the other hand, we found that the training of the hybrid model
can be improved by using direct optimization algorithm which uses the free-run
simulation of the hybrid model, however only SQP was able to found better solution
than the classical back-propagation algorithm, while ES and PSO was not. The reason
why ES and PSO was ineffective is that the problem space was very large for them. The
results of the application example show that the proposed hybrid modeling approach
works well even if the state variables cannot be measured and the full first-principle
model of the control process cannot be obtained.
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